Назад К предыдущей части


Демин В., продолжение

ЗЕМЛЯ


Наша планета – самое обыкновенное небесное тело, по своим физическим и химическим характеристикам ничем не отличающееся от других аналогичных объектов. Впрочем, одна особенность есть. Это мы с вами. Человечество присовокупило к многочисленным неразгаданным загадкам Вселенной еще и собственные, в большинстве своем нерешенные, а иногда даже и в принципе неразрешимые проблемы. Испокон веков человек считал себя "пупом земли" и центром Мироздания. Хотя, с точки зрения вечности (как любили выражаться еще в недавнем прошлом), вся человеческая история – всего лишь незначительный миг в эволюции Вселенной. Да и сам человек и даже человечество в целом – столь малая величина в ней, что, выражаясь языком математики, ею вполне можно пренебречь. Субъективно с этим согласиться трудно. Но если преодолеть барьер субъективности, то ничего другого сказать нельзя. Субъективность вообще, как рок, довлеет над нашим миропредставлением. Трудно, к примеру, "выпрыгнуть из себя" и избавиться от кажущегося самоочевидным факта, что окружающий мир, Вселенная находится вокруг Земли – естественной системы отсчета. В действительности же никаких привилегированных систем отсчета в природе не существует, все они равноправны и любую при желании можно абсолютизировать.

Человек и Земля так же неразрывны, как неразрывны Человечество и Космос:

Я – сын Земли, дитя планеты малой,
Затерянной в пространстве мировом,
Под бременем веков давно усталой,
Мечтающей бесплодно о ином.
...................................................
Мы были узники на шаре скромном,
И сколько раз, в бессчетной смене лет,
Упорный взор Земли в просторе темном
Следил с тоской движения планет!
....................................................
И, сын Земли, единый из бесчестных,
Я в бесконечное бросаю стих, –
К тем существам, бесплотным иль телесным,
Что мыслят, что живут в мирах иных.
Валерий Брюсов

Безусловно, Земля не менее таинственна, чем любой другой объект Вселенной – близкий или далекий. Да и о себе мы знаем не больше, чем о планете, на которой нам суждено жить. Когда мы появились, сколько просуществуем и каково наше предназначение? Мы не знаем, что такое жизнь и как она возникла на Земле. Конечно, существует немало правдоподобных гипотез; время от времени та или иная из них становится господствующей. Потом ей на смену (как правило, со сменой поколений) приходит другая. Затем – третья и т.д. В действительности все это предположения.

Точно так же сменяют друг друга гипотезы, касающиеся самой близкой для нас планеты – Земли. Настолько близкой, что до недавнего времени да кое-где и сейчас она именуется Матерью Сырой Землей, а священное понятие Родины часто ассоциируется с родной землей. Но что происходит в глубинах этой земли – известно в самых общих чертах. Откуда взялись горные породы и полезные ископаемые – тоже не знаем. Гипотезы не в счет – они сегодня одни, завтра – совсем другие. Нынче, к примеру, доминирует гипотеза органического происхождения нефти: во всех учебниках написано и, соответственно, в качестве абсолютной истины преподносится ученикам, что материнским веществом нефти были разложившиеся в далеком геологическом прошлом организмы. Но существует и прямо противоположное научное мнение: нефть имеет неорганическое происхождение. Более того, жизнь произошла из нефти. Такую гипотезу еще в 1950-е годы обосновал академик П.Н. Кропоткин*.

___________________
* См.: Кропоткин П.Н. Нефть из живого или живое из нефти? // Земля и Вселенная. 1995. No 2.


Один из самых знаменитых романов Жюля Верна называется "Путешествие к центру Земли". В прошлом веке строение земного шара представлялось еще более смутным, чем сегодня. Потому-то Жюль Верн посчитал вполне допустимым отправить своих героев по пещерным ходам к самому сердцу планеты. В России жюльверновский сюжет был блестяще обыгран в популярном романе В.А. Обручева "Плутония" – с той разницей, что русские путешественники спускались в просторы полой Земли, населенной ископаемыми животными, не по узким и темным проходам, а по обширной впадине, расположенной в заполярной области.

Здесь нет нужды пересказывать содержание романов. Однако нынешние представления о том, что же находится в центре Земли, по-прежнему открывают возможности для любой фантазии. Господствующая концепция первоначального огненно-жидкого ядра Земли, хотя и подтверждается наглядно вулканической деятельностью, не дает вразумительного ответа на вопросы, как это огненное ядро в свое время возникло и почему Земля быстро не остыла в соответствии с законами термодинамики. Существуют и другие гипотезы, в том числе и дожившая до наших дней концепция "полой Земли". Она была особенно модной среди германских ученых и политиков в годы третьего рейха. А в послевоенные годы ее отстаивал и развивал чилийский (и даже шире – южноамериканский мыслитель) Мигель Серрано.

Представление о Подземном царстве имеет древнейшие корни – и не только сказочные или мифологические. В преданиях многих евразийских народов сохранился архаичный сюжет о людях (или человекоподобных существах), обитающих в недрах Земли: Хозяйка Медной горы, Подземная чудь, Аггарта – северная Шамбала. Сведения на сей счет сохранились и в русских летописях, где они излагаются как сами собой разумеющиеся факты. Так, в Начальной летописи под годом 1096-м (6604) Нестор воспроизводит свою беседу, надо полагать, с приезжим новгородцем:

Теперь же хочу поведать, о чем слышал 4 года назад и что рассказал мне Гюрята Рогович новгородец, говоря так: "Послал я отрока своего в Печору, к людям, которые дань дают Новгороду. И пришел отрок мой к ним, а оттуда пошел в землю Югорскую. Югра же – это люди, а язык их непонятен, и соседят они с самоядью в северных странах. Югра же сказала отроку моему: "Дивное мы нашли чудо, о котором не слыхали раньше, а началось это еще три года назад; есть горы, заходят они к заливу морскому, высота у них как до неба, и в горах тех стоит клик великий и говор, и секут гору, стремясь высечься из нее; и в горе той просечено оконце малое, и оттуда говорят, но не понять языка их, но показывают на железо и машут руками, прося железа; и если кто даст им нож ли или секиру, они взамен дают меха. Путь же до тех гор непроходим из-за пропастей, снега и леса, потому и не всегда доходим до них; идет он и дальше на север".

Повесть временных лет (перевод)

Вообще же современные научные представления о внутреннем строении Земли опираются на четыре считающиеся бесспорными тезиса:

внутреннее ядро радиусом около 1300 км, в котором вещество, по всем данным, находится в твердом состоянии;

внешнее ядро, радиус которого равен примерно 3400 км; здесь в слое толщиной около 2100 км, окружающем внутреннее ядро, вещество находится в жидком состоянии;

оболочка или мантия толщиной около 2900 км и кора, толщина которой равна 4–8 км под океанами и 30–80 км под материками. Кора и мантия разделены поверхностью Мохоровичича, на которой плотность вещества земных недр резко возрастает от 3,3 до 5,2 г/см3*.

________________
* См.: Климишин И.А. Астрономия наших дней. М., 1976. С. 256.

 

О прочем же можно говорить с той или иной степенью вероятности. Взять, к примеру, температуру в глубинных недрах Земли. Извержения вулканов не оставляют сомнения, что там – царство огненной стихии и расплавленных пород. Давно подмечено, что по мере спуска в шахты через каждые 33 метра температура повышается на 1 градус. Зная радиус Земли, нетрудно подсчитать, что в таком случае температура в самом ее центре должна достигать 60000 градусов К. У ученых эта цифра вызывает большие сомнения (хотя получена она вполне научными методами), и они снижают ее в 10–20 раз. Такие же расхождения существуют в представлениях о плотности и давлении в центре Земли, и о распределении химических элементов и т.п.

Поверхностные слои земной коры вроде бы вызывают меньше споров – по крайней мере в том, что касается ее состава. Здесь различаются горные породы различных типов – осадочные, магматические и метаморфические. Значительная часть осадочных пород образовалось в результате жизнедеятельности организмов: мел, известняк, каменный уголь. Магматические породы (базальты и туфы) – в результате вулканической деятельности. Того же происхождения метаморфические породы – граниты, сланцы, гнейсы, - но их кристаллизация происходила при высоких температурах и давлениях в глубоких толщах коры.

Все же на поверхности Земли вопросов не меньше. Движутся ли материки? Если движутся, то какова была конфигурация суши в прошлом? Был ли всемирный потоп? А может, их было несколько? Каковы в таком случае причины подобных катаклизмов? Ученые-геологи установили, что материки на поверхности Земли не неподвижны, а перемещаются со скоростью нескольких сантиметров в год. За миллионы лет набегает приличное расстояние. О причинах можно только догадываться. Наиболее вероятная – скольжение гигантских материковых плит по некоторому находящемуся под ними в недрах Земли вязкому и раскаленному субстрату. Зато результаты – налицо.

Согласно теории дрейфа материков, некогда все они представляли единый суперконтинент – Пангею (рис. 92). Затем суша раскололась на несколько частей, как разбитое зеркало, и начался ее дрейф по разным направлениям. Северная и Южная Америки стали удаляться от Европы и Африки (об их былом единстве напоминают практически полностью совпадающие контуры береговых линий). В районе же Тихого и Индийского океанов тектонические глыбы воистину космических масштабов двигались навстречу друг другу – пока не произошло столкновение. На месте удара, от которого содрогнулась Земля, теперь высятся Гималаи – высочайшая горная система планеты*.

А сколько вопросов остается без ответа в связи с казалось бы незыблемой "ледниковой теорией", ее выводами, согласно которым якобы еще 20–15 тысяч лет назад Север Евразии вплоть до Карпат и Приднепровья был сплошь покрыт материковым льдом, и никакая жизнь здесь была в принципе невозможна. Под эту догму вот уже более ста лет подгоняется вся мировая история: ее отсчет для Европы, Азии и Северной Америки начинается где-то с 12–10 тысячелетия до н.э., когда после постепенного отступления (стаивания) ледника древний человек якобы начал медленно продвигаться с Юга на Север. По существу, ледник сковал саму историю!

Между тем накоплено немало фактов и аргументов, свидетельствующих вовсе не в пользу абсолютизированной ледниковой концепции. Самое печальное, что догматически настроенные теоретики не желают с ними считаться, а предпочитают использовать средства, далекие от науки. Доходило до того, что когда гляциалисты (так по-научному именуются сторонники "ледниковой теории"), обнаруживая в шурфах вторую ископаемую почву (а согласно их установкам там должна быть только одна), "лишнюю" попросту засыпали, а экспедицию объявляли "якобы небывшей". Точно так же замалчиваются неледниковые процессы образования валунных отложений: с точки зрения "ледниковиков" появление валунов объясняется "утюжкой" льда: своей тяжестью он обкатывал и шлифовал огромные камни, как вода гальку в морях и океанах. Между тем даже в Заполярье валуны обнаруживаются глубоко в карьерах. Валунообразные камни найдены астронавтами на Луне и зафиксированы телекамерой на Марсе.

Игнорируется сторонниками абсолютизированных догм и мнение основоположника палеоклиматологии в России А.И. Воейкова, считавшего существование обширного европейского оледенения маловероятным и допускавшего лишь частичность такового на севере Евразии и Америки. Что касается средней полосы России, то здесь Воейков был более чем категоричен: в соответствии с его расчетами ледниковый панцирь на широте российских черноземов автоматически повлек бы за собой превращение земной атмосферы над данной территорией в сплошную ледяную глыбу*. Такого, естественно, не было, а потому не было и той картины оледенения, которая обычно рисуется на страницах учебников. Следовательно, сопоставлять ледниковую гипотезу с известными историческими реалиями необходимо очень осторожно. Тем более, что имеется масса фактов, не умещающихся в прокрустово ложе господствующих догм. Среди них – отсутствие ползущей ледниковой корки в условиях современного сурового климата Сибири и Крайнего Севера. Почему-то считается общепризнанным, что в прошлом примерно в тех же условиях ледники сковывали континент толщей километрового панциря, хотя теперь подобное явление не наблюдается даже на "полюсе холода" в Оймяконе. Вместо всесокрушающего ледяного вала здесь происходит обычная сезонная смена снежного покрова с обычной подвижкой речного и морского льда.

Суммируя накопленные факты и подытоживая общее состояние проблемы так называемых ледниковых периодов, крупнейший антигляциалист академик И.Г. Пидопличко отмечал: "Науке до сих пор неизвестны такие факты – геологические, палеонтологические или биологические, – из которых с логической неизбежностью следовал бы вывод о существовании где-либо на Земле в любой период ее развития материкового (не горного) оледенения. И нет также оснований для прогноза, что такие факты будут когда-либо открыты"**. Это же подтверждают и многочисленные данные арктической археологии.

Сказанное, однако, не означает, что на Земле не случались никакие катастрофы. Напротив, случались – и даже гораздо большего масштаба, чем пресловутые оледенения. И причины их – прежде всего космические. Ключ к разгадке дал еще М.В. Ломоносов в сочинении "Первые основания металлургии или рудных дел" (1763 году), точнее, в обширном геологическом Прибавлении к нему под названием "О слоях земных". Великого русского энциклопедиста очень интересовал вопрос, откуда на Крайнем Севере России "взялись столь многие слоновые кости чрезвычайной величины в местах, к обитанию им неудобных, а особливо полуночных суровых краях сибирских и даже до берегов пустозерских." То, что климат в приполярных областях был в прошлом жарким, доказывают и находки окаменелых тропических растений.

Но чем же вызваны подобные природные контрасты, задает вопрос Ломоносов, между тем, что было в прошлом, и тем, что известно теперь? Изменением наклона земной оси по отношению к плоскости эклиптики! Вследствие этого полюса, как подтверждают и многочисленные исследования, неоднократно меняли свое положение. Соответственно менялось конкретное местоположение зон с холодным и теплым климатом на карте Земли, и там, где ныне царят льды, снега и долгая полярная ночь, некогда цвела буйная тропическая растительность и жили теплолюбивые животные. Ломоносов ссылается на предания египетских ученых, зафиксированные в "Истории" Геродота, что эклиптика была в далеком прошлом к экватору перпендикулярна. Русский мыслитель подсчитывает: такое могло быть 399 000 лет тому назад. Это, кстати, почти совпадает с сообщением Диодора Сицилийского, что халдейские астрономы вели летосчисление истории с 403-тысячного года до взятия Вавилона Александром Македонским. "Посему следует, – заключает великий уроженец Русского Севера, – что в северных краях в древние веки великие жары бывали, где слонам родиться и размножаться и другим животным, также и растениям, около экватора обыкновенным, держаться можно было, а потому и остатки их, здесь находящиеся, не могут показаться течению натуры противны"*.

В старых энциклопедиях, учебниках и научно-популярных книгах нередко приводилась карта движения полюсов по полушариям на протяжении всей истории Земли (в виде сплошной линии и отметками геологических эр). Как было рассчитано еще в прошлом веке, за геологическое время от докембрия и до четвертичного периода северный и южный географические полюса планеты поменялись местами, плавно (а может быть – и не вполне) пройдя вдоль всей поверхности моря и суши.

Можно выявить несколько предположительных причин изменения климата в районе современного Крайнего Севера. "Современного" – потому что в далеком прошлом (впрочем, исторически вполне обозримом) нынешние северные территории могли находиться совершенно в ином положении по отношению к плоскости эклиптики. Имеются несколько вариантов такого возможного смещения – оба естественные. Первый связан с медленным движением оси вращения Земли по круговому конусу, ось симметрии которого перпендикулярна к плоскости эклиптики (с периодом полного оборота примерно в 26 тысяч лет). В астрономии данное природное явление именуется прецессией, и оно неотвратимо, как и само движение Земли.

Второй вариант имеет вероятностный характер: положение оси вращения планеты по отношению к плоскости орбиты может резко измениться вследствие различных космических факторов. Допустим, в Солнечной системе появляется новое массивное тело (например, планета, захваченная в ходе галактического движения Солнца среди других звезд). Это существенно изменило бы баланс сил притяжения всей семьи Солнца. Космический взрыв в пределах или за пределами Солнечной системы мог бы также существенно повлиять на орбиты различных планет и условия их движения.

Третья предположительная причина возможного изменения климата на Земле (в том числе и в полярных областях) также имеет космический и столь же вероятностный характер: глобальные геологические и климатические изменения могут зависеть от галактического движения Солнца в направлении созвездия Льва и от вращения самой Галактики. Возможны и температурные колебания на самом Солнце. Наконец, существует совершенно экстравагантная, но достаточно аргументированная и просчитанная гипотеза о периодическом замещении друг другом звезд и планет. Применительно к Солнечной системе это выглядит так. Считается, что на месте нынешнего Солнца находилась когда-то другая звезда, которая постепенно остывала и угасала. Одновременно в окрестности нынешнего Юпитера разогревалось и разгоралось все ярче и ярче небесное тело, которое в один прекрасный день вспыхнуло новой звездой. При этом энергокинетический баланс в самой звездно-планетной системе оказался резко нарушенным. Для его восстановления и в соответствии с законами физики бывшая звезда, ставшая планетой, и бывшая планета, ставшая звездой, поменялись местами. Конечно, вся новосолнечная система пережила при этом колоссальную встряску, а на планетах – в том числе и на Земле – произошло подлинное светопреставление – с потопом, изменением климата и картины звездного неба.

Российской научной общественности скорее всего неизвестно, что серьезный вклад в осмысление астрофизического смысла проблемы светопреставления внес Альберт Эйнштейн. В 1953 году он написал предисловие к книге американского историка науки Чарльза Хепгуда, посвященной смещению земной коры, движению литосферы и, соответственно, резкому изменению климата главным образом в районе антарктического материка. Эйнштейн поддержал данную концепцию, и вот его доподлинные слова: "В полярном районе происходит постоянное накопление льда, который размещается вокруг полюса несимметрично. Вращение Земли действует на эти асимметричные массы, создавая центробежный момент, который передается жесткой земной коре. Когда величина такого момента превосходит некоторое критическое значение, он вызывает перемещение земной коры относительно расположенной внутри части тела Земли..."* Современные геофизики пошли еще дальше: была высказана гипотеза, согласно которой массированное и неуправляемое накопление полярных льдов и их несимметричное расположение по отношению к земной оси может привести к тому, что Земля произведет "кувырок".

Этим, однако, не исчерпывается возможность объяснения планетарных катаклизмов. Современная наука пришла к выводу о периодическом повторении на Земле и так называемой геомагнитной инверсии: когда северный и южный магнитные полюса меняются местами. Подсчитано, что за 76 миллионов лет такое случалось 171 раз, а последняя геомагнитная инверсия произошла между 10 и 12 тысячелетиями до н.э. По расчетам ученых, последняя геомагнитная инверсия, по времени совпадающая с гибелью легендарной Гипербореи (или Арктиды – гипотетического материка или архипелага в акватории нынешнего Ледовитого океана) и началом массовых этнических миграций с Севера на Юг, – вызвала резкое повышение уровня океана (не говоря уже о гигантской приливной волне), потепление, таяние снега и льда, скачкообразное повышение уровня рек. Это в одних местах. В других же, напротив, разразились лютые холода, поползли ледники. Общий итог: окончательно исчезла с лица Земли Прародина человечества, символом которой была гора Меру; погрузилась на дно океана легендарная Атлантида, канули в Лету другие очаги мировой цивилизации.

_________________
* Цит. по: Хэнкок Г. Следы Богов. М., 1997. С. 15–16.

 

Событие, известное из Библии под названием потопа, описано и во множестве других древних источников. В ряде из них прямо указано на главную причину потопа – изменение наклона неба по отношению к земле, что возможно только при смещении земной оси. Древнекитайский трактат "Хуайнаньцзы" повествует: "Небесный свод разломился, земные веси оборвались. Небо накренилось на северо-запад, Солнце, Луна и звезды переместились. Земля на юго-востоке оказалась неполной, и поэтому воды и ил устремились туда... В те далекие времена четыре полюса разрушились [похоже, древние китайцы знали о существовании двух географических полюсов и несовпадавших с ними двух магнитных. – В.Д.], девять материков раскололись, небо не могло все покрывать, земля не могла все поддерживать, огонь полыхал не утихая, воды бушевали не иссякая."*

Аналогичным образом Платон в диалоге "Политик" сообщает о стародавних временах, когда закат и восход Солнца и звезд были обратными нынешнему: они всходили на западе и заходили на Востоке. Нетрудно догадаться, что подобное возможно лишь при повороте земной оси на 180ш. В позднеантичной поэме Нонна Панополитанского о Тифоне также говорится о смещении земной оси и перемещении полюса во время светопреставления, устроенного космогоническим исполином.

Но наиболее известен рассказ Геродота, на протяжении многих веков заводивший в тупик историков и астрономов. Со ссылкой на египетских жрецов, которые лично поведали любознательному греку о тайнах древней хронологии, "отец истории" сообщает: 11 340 лет "Солнце четыре раза восходило не на своем обычном месте: именно дважды восходило там, где теперь заходит, и дважды заходило там, где ныне восходит".**

Теоретически возможно не только изменение наклона земной оси, но и иное ее положение внутри и на земной поверхности (при сохранении прежнего угла наклона по отношению к плоскости эклиптики). А коль скоро земная ось и ее оконечности – географические полюса – не закреплены неподвижно на земном шаре и склонны к блужданиям, то нынешние северные территории, знакомые по карте, могли в прошлом находиться где угодно. Чтобы проиллюстрировать это, достаточно вообразить учебный глобус, проткнутый насквозь длинной спицей. Спица – ось, ее концы – два полюса, которые могут находиться в любом месте, в зависимости от того, как проткнуть глобус.

__________________
* Литература Древнего Востока. Иран, Индия, Китай (тексты). М., 1984. С. 196–197.
** Геродот. История. Л., 1972. С. 124–125.

 

Итак, катастрофы космического масштаба для Земли – явление достаточно заурядное и довольно-таки частое. А смещение земной оси – лишь одно из возможных следствий глобальных катаклизмов. Известный американский ученый российско-еврейского происхождения Иммануил Великовский (1895 - 1979) написал на эту тему шесть книг, объединенных в серию "Века в хаосе". Он скрупулезно исследовал тысячи источников – исторических, мифологических, геологических, палеонтологических – и пришел к выводу, что планета Венера в семье Солнца – самая младшая. В преданиях многих народов разных континентов сохранилась память о стародавних временах, когда на небе не было ни Утренней, ни Вечерней звезды. И, следовательно, не было никакой Венеры в составе планет Солнечной системы. Она появилась сравнительно недавно (о конкретных датах можно дискутировать) и возникла при столкновении Марса с пролетавшей мимо кометой.

Последовал космический взрыв, сравнимый с мощностью тысяч термоядерных бомб. Но для Земли еще большие катастрофические последствия имел факт перемещения новорожденной планеты на нынешнюю орбиту. Будущая Венера прошла вблизи Земли, что как раз и повлекло за собой смещение ее оси. Следствием же явились грандиозные приливно-отливные океанические волны (несравнимые ни с какими цунами), которые носились по поверхностям материков, сметая все живое и неживое (нетронутыми остались лишь вершины мощных горных систем). Более того, на значительную часть Земли (примерно на треть суши и акваторий рек, озер и морей) обрушились огненные смерчи, в результате которых горели леса, плавились породы, а сваренные рыбы всплывали кверху брюхом в кипящей воде морей и океанов.

Именно это событие, по мнению Великовского, описано в обобщенно-символической форме в новозаветном Апокалипсисе: "...И упала с неба большая звезда, горящая, подобно светильнику, и пала на третью часть рек и источники вод. Имя сей звезде Полынь; и третья часть вод сделалась полынью, и многие из людей умерли от вод, потому что они стали горьки. <...> И поражена была третья часть Солнца и третья часть луны и третья часть звезд, так что затмилась третья часть их, и третья часть дня не светла была – так, как и ночи" (Отк. 8, 10–12).

В дополнение к многочисленным свидетельствам в пользу небывалой космической катастрофы (в частности, почерпнутым в преданиях северо-, центрально- и южноамериканских индейцев), собранным И. Великовским и приведенным в его книгах*, уместно сослаться и на некоторые недоступные ему источники. По преданиям сахалинских гиляков, во время вышеупомянутого светопреставления сначала "смоляной дождь обильно лил на землю. Потом небо прояснилось. Тогда три солнца и три луны родились. Три солнца все сожгли. Было так жарко, что рыба, выскакивавшая из воды, снаружи испекалась на Солнце. Эта Земля вся сгорела, поломалась. Вода только была. Море кипело, рыба вся, морские звери все умерли...". Примерно в том же духе описывают вселенскую катастрофу амурские гольды (нанайцы): "Вместо одного небесного светила взошло их три, от света стали люди слепнуть, от жажды гибнуть. Солнце жгло так сильно, что земля горела, в реках вода кипела. Когда рыба, играя, выскакивала из воды, то у нее сползала чешуя. Ночью, когда три солнца закатились, появились три луны, и ночь сделалась так светла, что людям не было возможности уснуть"**.

Другие ученые склонны считать главной виновницей космических бед, постигших когда-то Землю, не кометы, а ее спутницу (спутник) – Луну. Известно, как она влияет на Землю, вызывая приливы. Приливы, в свою очередь, действуют на Луну так, что ее орбита изменяется. Многие астрономы утверждают, что в результате подобного взаимодействия Луна медленно отдаляется от Земли. Из этого следует, что когда-то в древние времена Луна была гораздо ближе к Земле. Некоторые полагают даже, что Луна первоначально являлась частью Земли и была выброшена из нее очень много лет назад. Более того, указывается область земного шара, где находилась масса, ставшая впоследствии лунной. Это – тихоокеанская впадина. Правда, большинство ученых не принимает данную гипотезу всерьез.

Еще в середине нынешнего столетия немецкий астроном Герстенкорн опубликовал работу, в которой сделал вывод, что в те далекие времена, когда Луна была ближе к Земле, угол наклона плоскости ее орбиты к экваториальной плоскости земного шара был больше. Несколько миллиардов лет назад орбита Луны пролегала над полюсами Земли, так что ее можно было бы наблюдать на небе в непосредственной близости от Полярной звезды. Из расчетов Герстенкорна следует, что первоначально Луна была планетой, которая двигалась по орбите, очень близкой к земной. Когда-то она настолько сблизилась с Землей, что была захвачена ею, иначе говоря, начала обращаться вокруг Земли. В то время направление движения Луны по орбите было противоположно направлению вращения Земли вокруг своей оси. Поэтому приливы влияли на движение Луны прямо противоположным образом, нежели в наши дни: Луна постепенно приближалась к Земле. Угол наклона плоскости орбиты Луны к плоскости экватора становился все больше и больше, и наконец Луна начала двигаться в полярной плоскости, над полюсами Земли. В то время Луна была удалена от нашей планеты всего на 4 земных радиуса, и это расстояние продолжало сокращаться.

Наблюдателю тех далеких времен Луна могла казаться бы обычной планетой, которая иногда выглядит яркой, а иногда тусклой. Однако в один прекрасный день (точнее – ночь) яркость Луны начала усиливаться. В течение сотен миллионов лет Луна постепенно приближалась к Земле, ее видимый диаметр все увеличивался и наконец более чем в 20 раз стал превышать современный. Одновременно увеличивались и приливы. Когда Луна находилась в минимальном удалении от Земли, высота приливной волны достигала нескольких километров (некоторые ученые называют цифру – 10 км). Вот еще одно объяснение возможных причин потопов. Можно представить, что творилось на Земле, когда из края в край по ней гуляла 10-километровая волна!

Но если Луна вызывала столь гигантские приливы на Земле, то влияние земных приливов на движение Луны было еще более существенным. Сила земного притяжения на поверхности Луны превышала силу лунного притяжения. Астрономам давно известно, что такая ситуация возникает, как только спутник, приближающийся к планете, переходит через предел Роше, который равен для Земли примерно 2,5 земных радиуса. Герстенкорн считает, что Луна достигла предела Роше. Когда это произошло, Луна начала разрушаться. Скалы, камни, песок были сброшены с ее поверхности силой земного притяжения и рассеялись в пространстве между Землей и Луной. Небо потемнело. Солнце померкло. Наступило глобальное похолодание. Климат на всех континентах изменился. Начались массовые миграции людей и животных.

После того как Луна наиболее близко подошла к Земле, воздействие приливов на Луну изменилось таким образом, что Луна начала удаляться. Большая часть осколков Луны упала на Землю. Часть осколков впоследствии упала на Луну. Возможно, что именно так и образовались лунные кратеры. И когда Луна удалилась после столь разрушительной встречи с Землей, ее поверхность покрывали шрамы. После этого уже никаких существенных событий в истории Луны не было, если не считать того, что она медленно удалялась от Земли под воздействием приливов*.

А что было с Землей раньше? Как и когда вообще она возникла? Какие этапы наиболее характерны для ее эволюции? В зависимости от того, какая гипотеза о происхождении Солнечной системы – "холодная" или "горячая" – положена в основу наших представлений, ответ на вопрос о рождении нашей планеты и основных стадиях ее развития будет разным. Приведем одну из "суммарных" точек зрения, основанную на "холодной" гипотезе происхождения Солнечной системы.

Когда газовые и пылевые частицы в облаке, окружавшем молодое Солнце, постепенно соединились друг с другом, вся их масса сжалась под воздействием собственного тяготения. При этом во внутренней области возникли огромные давления и температуры. Первоначальная масса планеты, возможно, была в 20 раз больше современной и в дальнейшем уменьшилась главным образом за счет потери легких элементов, особенно водорода и гелия, в то время когда температуры превышали 40000 С. После остывания примерно до

30000 С тяжелые элементы сконденсировались, перейдя в жидкое состояние; при этом образовалось земное ядро из железа с примесью никеля. Более легкие металлы "всплыли наверх", т. е. в наружные слои, и образовали более холодную и большую по размерам "мантию".

После первого миллиарда лет, когда температуры упали приблизительно до 10000 С, стала формироваться тонкая твердая, но подвижная земная кора. Благодаря слагающим ее древнейшим "горным породам" на Земле сохранилась "летопись" последующих событий, происходивших в течение ее долгой эволюции. В период между 3,7 и 2,2 миллиарда лет назад земная кора охладилась до температуры кипения воды. Теперь уже водяной пар мог конденсироваться из первоначальной атмосферы, которая содержала также аммиак, метан и двуокись углерода. В то время как на экваторе вода кипела, на полюсах мог идти дождь. "Вторичная" атмосфера, богатая кислородом, смогла установиться только по прошествии еще 0,5 - 2 миллиарда лет. Поскольку тогда еще не существовало защитного озонного слоя, интенсивное ультрафиолетовое излучение Солнца стимулировало протекание химических реакций. Происходили сильные извержения вулканов. Формировались океаны и континенты.

В течение последнего миллиарда лет континенты стали "дрейфовать", а магнитные полюса – "блуждать". Это привело к сильнейшим изменениям климата. Было время, когда в Гренландии росли магнолии, кораллы встречались в арктических морях, а ледники покрывали пространства Бразилии и Конго.

В последние 500 миллионов лет Северный магнитный полюс, никогда не удалявшийся от географического полюса (оси вращения Земли), двигаясь по какой-то неправильной траектории, сместился из своего прежнего положения в Тихом океане приблизительно в его современное местоположение, мало изменившееся за последние 60 миллионов лет. Временами происходили также непонятные изменения магнитной полярности (северная – на южную). Возможно, они были как-то связаны с изменениями в характере течения вещества в жидком железном ядре Земли.

Приблизительно 500 миллионов лет назад три континента, называемые сейчас Северной Америкой, Европой и Азией, располагались вдоль экватора, тогда как четвертый гигантский континент находился в Южном полушарии и позднее превратился в Южную Америку, Африку, Австралию, Индию и Антарктиду. Первую группу материковых масс геологи назвали Лавразией, а вторую – Гондваной.

Еще через 400 миллионов лет эти две группы слились в единый "суперконтинент", называемый теперь Пангеей, о которой уже говорилось выше. В то время столкновение Африки и Северной Америки привело к воздыманию Аппалачских гор, имевших 14-километровую высоту; теперь это старые и разрушенные горы. То была "эра земноводных", предшествовавшая появлению рептилий и динозавров. Еще через 200 миллионов лет суперконтинент начал раскалываться, разделяясь на северную и южную части. В течение последних 130 миллионов лет Африка три раза сталкивалась с Европой и "отскакивала" от нее, что привело к образованию Альпийских гор, вулканов и возникновению сильных землетрясений. На месте современного Средиземного моря когда-нибудь образуется новый горный хребет. Южная Америка начала отделяться от Африки, вероятно, 100 миллионов лет назад и соединилась с Северной Америкой лишь приблизительно 4 миллиона лет назад. Атлантический океан теперь расширяется, а Тихий сужается.

На протяжении всего этого времени происходила эволюция первоначальных форм жизни. Подходящие условия для этого возникли только благодаря сочетанию на нашей планете уникального химического состава и существующего диапазона температур. Найденные здесь элементы в целом редко встречаются во Вселенной. Обо всем описанном прекрасно сказали два астронома. По словам Джона Гриббина, мы являемся "звездными детьми", поскольку "абсолютно точно, что все в наших телах, за исключением водорода, прошло обработку по крайней мере в одной звезде и по крайней мере один миллиард лет назад". Карл Саган же сказал иначе: "Наши кости состоят из кальция, образованного за счет альфа-процесса в некоторых звездах типа красных гигантов миллиарды лет назад. То же самое относится к железу, содержащемуся у нас в крови, к углероду и кислороду как составляющим наших тканей"*.

Ученые не перестают удивлять нас все новыми и неожиданными открытиями, касающимися космической обусловленности жизненно важных процессов, происходящих на Земле. В феврале 1996 года с помощью запущенного НАСА космического аппарата "Полар" было сделано сенсационное открытие. Оказывается, наша планета непрерывно бомбардируется из Космоса ледяными глыбами крупных размеров – до 12 метров в поперечнике. Как рассчитали специалисты, бомбардировка происходит с интенсивностью от 5 до 30 ударов в минуту, что составляет около 43 тысяч попаданий ледяных "снарядов" в сутки. До поверхности Земли смертоносные посылки не долетают, а на высоте от 1 тысячи до 2,5 тысячи километров рассыпаются на мелкие осколки и испаряются в лучах Солнца, пополняя запасы дождевых облаков. Итак, дожди, которые постоянно идут на планете, содержат вещества, доставленные прямо из Космоса. Толща воды, доставленная из глубин Вселенной за 10–20 тысяч лет, составляет 2,5 см. За десятки и сотни миллионов лет накапливается многокилометровая масса морей и океанов. Открытие американских ученых заставляют по-новому взглянуть на всю историю Земли. Ибо если "раскрутить" новые факты, то оказывается, что гидросфера планеты имеет преимущественно космическое происхождение. И именно из Космоса она могла в первую очередь "заразиться" органическими молекулами, которые и привели в конечном счете к возникновению жизни на Земле и ее последующей эволюции.

 

КОСМИЧЕСКИЕ РИТМЫ

Повторяемость и предсказуемость космических и особенно солнечно-планетарных явлений неизбежно приводили к мысли об их отражении на развитии социума, влиянии на общественный прогресс. Идет ли исторический процесс прямолинейно, скачками или зигзагообразно? Возможно ли возвращение к некоторым исходным точкам или воспроизведение старых форм в новых? Или же в истории все необратимо? А может, человеческие цивилизации, общественно-экономические формации и этнические системы переживают, как и все во Вселенной, рождение - расцвет - смерть.

Последняя модель на протяжении долгого времени привлекала внимание историка и культуролога Л.Н. Гумилева (1912 - 1992). Согласно теории биосферы Вернадского, биогенная миграция атомов космических элементов всегда стремится к своему максимальному проявлению; все живое вещество планеты служит источником свободной энергии и оказывает непосредственное воздействие на социальные процессы. Гумилев доказал, что под влиянием природных законов этносы как устойчивые формы объединения людей проходят в своем развитии несколько обязательных стадий: от рождения – через расцвет – к угасанию. Источником данного естественно-исторического процесса как раз и является энергия живого вещества Земли, по космически запрограммированным каналам она-то и воздействует на этносы. Гумилев лишь наметил основные направления в познании взаимосвязи биокосмических и социальных закономерностей. Конкретный механизм их взаимодействия, позволяющий прогнозировать близкие и отдаленные результаты, остался во многом невыясненным, что, в свою очередь, обусловлено многими нераскрытыми и ждущими специального исследования процессами образования и функционирования биосферы и ноосферы.

Колебания биохимической энергии под воздействием, главным образом, космических факторов непосредственно влияют на поведение индивидов в рамках конкретных этнических систем. Отдельные личности способны получить избыточный энергетический импульс, в результате чего становятся активным организующим началом больших и малых этнических групп. Такой избыток биохимической энергии живого вещества, позволяющий преодолеть инстинкт самосохранения и приводящий к физиологическому, психическому и социальному сверхнапряжению, называется пассионарностью, а люди, наделенные соответствующим энергетическим зарядом и обладающие повышенной тягой к действию, называются пассионариями. Именно они, когда в их поле притяжения оказываются массы людей, являются главными двигателями истории. Механизм связи между пассионарностью, подпитываемой биохимической энергией живого вещества биосферы, и поведением пассионариев очень прост. Обычно у людей, как у животных организмов, энергии столько, сколько необходимо для поддержания жизни. Если организм человека способен "вобрать" энергии из окружающей среды больше необходимого, то человек создает вокруг себя отношения и связи, позволяющие применять энергию в любом из выбранных направлений. Это может быть и создание новой религиозной системы или ереси, и разработка научной теории или изобретения, и строительство храма, и реформирование консервативной системы. При этом пассионарии выступают не только как исполнители, но и как организаторы. Вкладывая свою избыточную энергию в организацию и управление соплеменниками на всех уровнях социальной иерархии, они, хотя и с трудом, вырабатывают новые стереотипы поведения, навязывают их всем остальным и создают таким образом новый этнос, видимый для истории*.

Пассионарность может проявляться и с положительным, и с отрицательным знаком, порождая как подвиги, созидание, благо, так и преступления, разрушение, зло. Данные феномены имеют естественные биохимические и биофизические причины и в конечном счете коренятся в космических закономерностях. Отсюда вытекает проблема, требующая философского и общенаучного осмысления: взаимообусловленность нервно-биотических и физико-космических процессов, установление лежащих в их основе пока еще не выявленных онтологических закономерностей.

Гумилев не просто углубил и конкретизировал идеи Вернадского, но и наметил пути для их дальнейшего развития. Согласно главному биогеохимическому принципу Вернадского, биогенная миграция атомов космических элементов в биосфере всегда стремится к максимальному своему проявлению: все живое вещество планеты является источником свободной энергии и может производить работу. Отсюда Гумилев делает вывод: наша планета получает из Космоса больше энергии, нежели необходимо, для поддержания равновесия биосферы, что ведет к эксцессам, порождающим среди животных явления, вроде перелетов саранчи или массовых миграций грызунов, а среди людей – пассионарные толчки (взрывы этногенеза). Следовательно, пассионарность (как способность к целенаправленным сверхнапряжениям) с природно-космической точки зрения, – это врожденная способность организма абсорбировать энергию внешней среды и выдавать ее в виде работы*.

Углубляя энергетическое обоснование феномена пассионарности, Гумилев задавался вопросом и о конкретных механизмах воздействия космического излучения на поведение людей в рамках выявленных этапов естественного развития этносов. С точки зрения генетики, пассионарность это мутация. Пассионарии-мутанты – и древнеегипетские, и римские, и монгольские, и русские – были одинаково активны, что генетически объясняется рекомбинацией (или разрывом) фрагментов хромосомы как определенной, повторяющейся от толчка к толчку химической реакцией, происходящей "весьма быстро и необратимо под воздействием неизвестного пока излучения в оптической части спектра". Известно, что подобные перестройки на генном уровне легко стимулируются лучом лазера, что давно нашло уже применение в сельском хозяйстве для получения высокоурожайных сортов полезных растений. По Гумилеву, характер "пассионарного излучения" должен быть близок по своей природе к подобным лучам. Испускают ли их Солнце и звезды или же какие-то неизвестные пока источники в глубинах Галактики – покажет дальнейшее развитие науки*.

Космические круговороты – это наша повседневность, настолько привычная, что мало кто задумывается над их вселенскостью. Ежесуточная смена дня и ночи, времен года – результат космических процессов: вращения планеты вокруг оси и ее движения вокруг Солнца. Но человек постоянно задумывался и над более масштабными круговоротами.

Самая впечатляющая и детально продуманная космическая модель временных циклов была разработана в индуизме, хотя в ее основу положена концепция древнейшей космографии. Согласно данной хорошо известной концепции, Мироздание, включающее и Землю, и человечество на ней, подчинены раз и навсегда предопределенным циклам. Каждый такой цикл, именуемый махаюгой ("большой век"), продолжается 4 320 000 лет и распадается на четыре эпохи – юги. В течение четырех юг (критаюги, третаюги, двапараюги и калиюги) цивилизация постепенно деградирует от "золотого века" – эпохи всеобщего благоденствия – к торжеству "царства зла" – эпохи всеобщего упадка, процветания порока, низменных страстей, лжи, алчности и т.п. Сейчас как раз идет шестое тысячелетие калиюги, но до конца ее еще 426 000 лет. Так что все худшее еще впереди. Лишь по прошествии указанного времени мир вернется в начальную точку, и на Земле вновь наступят согласие и процветание. Но этим космическая цикличность не ограничивается. Нас еще подстерегают вселенские катаклизмы. Правда, очередной ожидается не скоро. 1000 махаюг образуют еще один временной цикл – кальпу (или 1 день Брахмы). [Трехглавый Брахма – верховное индийское (а еще ранее – арийское) Божество – Творец мира (рис. 93)]. Когда кальпа заканчивается, на небе появляются по разным версиям от 7 до 12 солнц и дотла сжигают все живое и неживое. После чего все начинается сначала. Но на упомянутых вселенских светопреставлениях космические циклы не завершаются. Помимо вселенского "дня Брахмы" – кальпы – есть еще "век Брахмы", который продолжается всего-навсего 311 040 000 000 000. Он тоже имеет начало, конец, повторение и свой вселенский смысл. По окончании "века Брахмы" происходит новый акт творения, и Вселенная обновляется.

Оригинальная концепция в русле традиционных идей "вечного возвращения" была разработана академиком А.Д. Сахаровым.

__________________
* См.: Гумилев Л.Н., Иванов К.П. Этносфера и Космос // Гумилев Л.Н. Этносфера: История людей и история природы. М., 1993. С. 313–314.

 

Альтернативная гипотеза о предыстории Вселенной заключается в том, что на самом деле существует не одна Вселенная и не две (как – в некотором смысле слова – в гипотезе поворота стрелы времени), а множество кардинально отличающихся друг от друга и возникших из некоторого "первичного" пространства (или составляющих его частиц; это, возможно, просто иной способ выражения). Другие Вселенные и первичное пространство, если есть смысл говорить о нем, могут, в частности, иметь по сравнению с "нашей" Вселенной иное число "макроскопических" пространственных и временных измерений – координат (в нашей Вселенной – три пространственных и одно временное измерение; в иных Вселенных все может быть иначе!). Я прошу не обращать особого внимания на заключенное в кавычки прилагательное "макроскопических". Оно связано с гипотезой "компактизации", согласно которой большинство измерений компактифицированно, то есть замкнуто само на себя в очень малых масштабах.

Предполагается, что между разными Вселенными нет причинной связи. Именно это оправдывает их трактовку как отдельных Вселенных. Я называю эту грандиозную структуру "Мега-Вселенная". <...> Идеи "Мега-Вселенной" чрезвычайно интересны. Быть может, истина лежит именно в этом направлении. Для меня в некоторых из этих построений есть, однако, одна неясность несколько технического характера. Вполне допустимо предположить, что условия в различных областях пространства совершенно различны. Но обязательно законы природы должны быть всюду и всегда одними и теми же. Природа не может быть похожей на Королеву в сказке Кэрролла "Алиса в стране чудес", которая по своему произволу изменяла правила игры в крокет. Бытие не игра. Мои сомнения относятся к тем гипотезам, которые допускают разрыв непрерывности пространства-времени. Допустимы ли такие процессы? Не есть ли они нарушение в точках разрыва именно законов природы, а не "условий бытия"? Повторяю, я не уверен, что это обоснованные опасения; может, я опять, как в вопросе о сохранении числа фермионов, исхожу из слишком узкой точки зрения. Кроме того, вполне мыслимы гипотезы, где рождение Вселенных происходит без нарушения непрерывности.

Предположение, что спонтанно происходит рождение многих, а быть может, бесконечного числа отличающихся своими параметрами Вселенных и что Вселенная, окружающая нас, выделена среди множества миров именно условием возникновения жизни и разума, подучило название "антропного принципа". <...> В концепции многолистной Вселенной антропный принцип тоже может играть роль, но для выбора между последовательными циклами или их областями. Эта возможность рассматривается в моей работе "Многолистные модели Вселенной". Одна из трудностей многолистных моделей заключается в том, что образование черных дыр и их слияние настолько нарушает симметрию на стадии сжатия, что совершенно непонятно, пригодны ли при этом условия следующего цикла для образования высокоорганизованных структур. С другой стороны, в достаточно продолжительных циклах происходят процессы распада барионов и испарения черных дыр, приводящие к выглаживанию всех неоднородностей плотности. Я предполагаю, что совокупное действие этих двух механизмов – образования черных дыр и выравнивания неоднородностей – приводит к тому, что происходит последовательная смена более "гладких" и более "возмущенных" циклов. Нашему циклу, по предположению, предшествовал "гладкий" цикл, во время которого черные дыры не образовались. Для определенности можно рассматривать замкнутую Вселенной с "ложным" вакуумом в точке поворота стрелы времени. Космологическая постоянная в этой модели может считаться равной нулю, смена расширения сжатием происходит просто за счет взаимного притяжения обычного вещества. Продолжительность циклов возрастает вследствие роста энтропии при каждом цикле и превосходит любое заданное число (стремится к бесконечности), так что условия распада протонов и испарения черных дыр выполняются.

А.Д. Сахаров. Воспоминания


В рамках гипотезы "Большого взрыва", горячим приверженцем которой он был, Сахаров отстаивал идею "многолистной модели Вселенной", предполагающую непрерывное возвращение Вселенной (или точнее – вселенных) к некоторым исходным точкам. Если воспользоваться образом, предложенным самим Сахаровым, в процессе бесконечной космической эволюции вечно перелистываются страницы книги "материального бытия" (отсюда и название "многолистная модель"). Один цикл незамедлительно сменяется другим. Естественно, "убийственный вопрос": что же было до начала самого первого цикла – не снимается. Но он решается нетривиальным способом. А.Д. Сахаров предположил, что в момент начала первого цикла происходит обращение времени (рис. 94). Иными словами, до этого момента происходит то же самое, что и после него, но только в обратном порядке. Поскольку при обращении времени меняют направление все физические, химические, биотические и прочие процессы, – обитатели каждой вселенной (а Сахаров был убежден в множественности населенных миров) живут в твердом убеждении, что время течет в единственно возможную сторону – из прошлого в будущее.

Согласно гипотезе Мега-Вселенной, одновременно образовалось огромное количество разных миров с разными условиями существования (в частности, с разным числом пространственных измерений, а, возможно, и с несколькими осями времени) (рис. 95). Нашему же изучению доступен только тот единственный мир, в котором возможно существование разумной белковой жизни (антропный принцип). Однако, по Сахарову, разум независим от носителей-индивидов и способен передавать информацию представителям будущих циклов и иных миров.

С многолистными моделями связана еще одна интригующая воображение возможность, верней – мечта. Может быть, высокоорганизованный разум, развивающийся миллиарды миллиардов лет в течение цикла, находит способ передать в закодированном виде какую-то самую ценную часть имеющейся у него информации своим наследникам в следующих циклах, отделенных от данного цикла во времени периодом сверхплотного состояния?.. Аналогия – передача живыми существами от поколения к поколению генетической информации, "спрессованной" и закодированной в хромосомах ядра оплодотворенной клетки. Эта возможность, конечно, совершенно фантастична, и я не решился писать о ней в научных статьях, но на страницах этой книги дал себе волю. Но и независимо от этой мечты гипотеза многолистной модели Вселенной представляется мне важной в мировоззренческом философском плане.

А.Д. Сахаров. Воспоминания

 

АСТРОЛОГИЯ – НАУКА ИЛИ МИФОТВОРЧЕСТВО?

На протяжении тысячелетий изучение звездного мира происходило по нескольким взаимосвязанным между собой направлениям. Самое надежное среди них – наблюдение, так как соответствует видимой всеми небесной картине. Менее надежно теоретическое объяснение, так всегда существует множество конкурирующих и постоянно сменяющих друг друга концепций. И, наконец, самое ненадежное – астрологическое направление. Но не потому, что долгое время преподносилось, как альтернатива научному. Напротив, ныне они все более и более пересекаются и смыкаются. Рационально понимаемая астрология на наших глазах превращается в космобиологию. Но фактов, объясняющих так называемое влияние звезд и планет на судьбы людей, все еще не достаточно.

Не вполне приемлема и традиционная астрологическая интерпретация накопленных сведений, ибо звезды и созвездия "предписывают судьбу" не напрямую, а лишь как составные элементы целостного Космоса. Это его закономерности, включая закономерности движения и эволюции звезд, оказывают непосредственное воздействие на биосферу Земли и конкретных индивидов. А звезды лишь фиксируют в качестве своего рода знаков местоположение Солнечной системы, ее местопрохождение через определенные участки Галактики или какие-то глубинные и неизвестные современной науке изменения в полевой структуре самой Галактики, возникающие при ее естественном вращении или ее сопряжении с другими галактиками и Вселенной в целом. По-иному обстоит дело с планетами, особенно ближайшими к Земле. Как Луна обусловливает океанические приливы и отливы, а также некоторые жизненные и психические процессы, так и другие планеты Солнечной системы – наверняка в меньшей степени и, скорее всего, в совокупных конфигурациях – оказывают влияние на жизнь и социум. По расстановке космических знаков – звезд и планет – в небесной книге астрологи традиционно и судят об их "предписаниях". Другими словами, светила – не прямые вершители, а светофоры судьбы – указатели направления хода событий.

Американский врач и биометролог Е.С. Мэкси, выступающий за возвращение астрологии в лоно официальной науки, следующим образом аргументирует свою точку зрения. Человек – наиболее развитый вид в экосистеме Земли и находится под воздействием сил, исходящих от нашего Солнца. Активность последнего, в свою очередь, также обусловлена влиянием космических сил, регулирующих деятельность этого светила. И если расположение планет влияет на механизмы солнечной активности, то совершенно очевидно, что они влияют на экосистему земного шара и самого человека. Таким образом, мы приходим к научной астрологии, утверждающей, что жизнь людей подвержена воздействию планет.

Между прочим, астрономия в ее нынешнем понимании в прошлом именовалась астрологией – в точном соответствии с образующими этот термин словами: "астрон" - "звезда" + "логия" - "учение, знание, наука" = "учение (наука) о звездах" (по аналогии с другими понятиями, означающими науки, – биология, зоология, энтомология, антропология, физиология, психология, филология, экология, этнология и др.). Астрономия же дословно означает "законы звезд" ("астрон" - "звезда" + "номос" - "закон"). Кстати, в древнерусской ученой традиции название науки вплоть до ХVIII века так и переводилось – "звездозаконие", означая, однако, и наблюдательную астрономию и предсказательную астрологию (рис. 96). Впрочем, и та и другая всегда тесно взаимодействовали.

В прошлом непревзойденными астрологами, как уже упоминалось, были халдейские звездочеты. Древнегреческий летописец Диодор Сицилийский сообщает в своей многотомной "Исторической библиотеке", что, по учению халдеев, "блуждающие звезды" - планеты "оказывают величайшее воздействие как благое, так и вредоносное на род людской; и именно из природы этих планет и их изучения они [халдеи] узнают, что предназначено человечеству" (11. 31.1).

В Новое время многие выдающиеся ученые были одновременно и астрономами и астрологами. Например, Кеплер – хорошо известен гороскоп, составленный им для известного полководца Валленштейна, в котором с точностью до месяца была предсказана насильственная смерть (убийство) этого самого известного деятеля времен всеевропейской Тридцатилетней войны (рис. 97). Такое положение, помимо природной любознательности ученых, объяснялось еще и тем, что во все времена на Востоке и на Западе деньги теми, у кого они были (государи, короли, князья, правители и т.п.), выделялись только под астрологическую деятельность, что позволяло строить обсерватории, закупать или заказывать нужные инструменты, выкраивать время для собственно астрономических исследований. Ситуация коренным образом стала меняться где-то с конца ХVII - начала ХVIII веков, хотя, скажем, в германских университетах астрология преподавалась в качестве учебной дисциплины до 1820 года.

Движение планет циклично: каждая совершает полный оборот вокруг Солнца за строго определенный период времени. Для Земли это – всем хорошо знакомый календарный год, равный примерно 365 суткам; для Меркурия – около 88 земных суток; для Венеры – около 224 суток; для Луны – около 27 суток; для Марса – 687 суток; для Юпитера – около 11 лет; для Сатурна – около 29 лет; для Урана – около 84 лет; для Нептуна – около 164 лет и для Плутона – около 247 лет. В конечном счете данные циклы обусловливают расположение и самих планет по отношению к земному наблюдателю, и звезд на небе по отношению к "блуждающим" планетам. Поэтому нет ничего удивительного в том что астральной ритмике подчинены конкретные природные и жизненные процессы на Земле.

Конкретную реализацию все это находит и в так называемой обусловленности человеческого характера, линий поведения и в конечном счете самой человеческой жизни "благоприятным" или "неблагоприятным" расположением звезд и планет и в первую очередь зодиакальных созвездий. Хотя во все времена и у всех народов данное обстоятельство считалось одной из величайших тайн Вселенной, – на самом деле оно поддается более чем простому объяснению. Вполне естественно, что в своем годичном движении вокруг Солнца Земля постоянно оказывается приближенной или удаленной к тем или иным участкам Галактики, к находящимся там звездам, к направленным потокам энергии и многообразным видам излучений. На привычной небесно-звездной карте данный бесспорный факт фиксируется в форме привязки к одному из 12 зодиакальных созвездий, то есть к некоторой точке на линии годичного прохождения Солнца по зодиакальным созвездиям. Вся эта космическая комбинация сугубо условна, поскольку в действительности перемещается не Солнце, а Земля. В результате на небе происходит изменение отношений в расположении светил. Но за кажущимися небесными перестановками скрывается нечто серьезное – изменение в дозировках космической энергии, получаемых каждым индивидом (при зачатии и рождении они приобретают "роковое" значение).

О влиянии лунных и солнечных ритмов вообще говорить не приходится. Данная сторона проблемы уже освещалась выше в соответствующих разделах. Однако нет никаких сомнений и в том, что звездно-планетная гармония и цикличность сопряжены также и с галактической ритмикой (внутригалактическое движение Солнечной системы в направлении созвездия Льва, собственное вращение нашей Галактики, межгалактические феномены и т.п.). Закономерности указанных явлений во многом неясны – о них можно только догадываться. Тем не менее вопрос о космических циклах, их влиянии на человеческую историю и – шире – на историю эволюции нашего дома – Земли – ставился постоянно. Особенно продвинулась естественноисторическая проработка данного вопроса в ХХ веке усилиями отечественных ученых-космистов.

Долгое время я не слишком верил в астрологические прогнозы и астрологические характеристики людей. Но однажды решился вникнуть. А для анализа избрал "звездно-психологические параметры" человека, родившегося под знаком Водолея. И вот что я узнал:

Краткая характеристика детей, родившихся с 20 января по 18 февраля:

Солнце тогда передвигается через зодиакальный знак ВОДОЛЕЯ. Этот тип ребенка один из самых забавных во всем Зодиаке. Непочтительный в отношениях с другими, он всегда будет требовать от них внимания или даже любви. В хороводе маленькие Водолеи чувствуют себя как рыба в воде. Родители могут вспоминать своих предков хоть до четвертого колена, но ничего подобного среди них не найдут.

Такой ребенок для родителей просто Божья благодать, если только они не из мещанской среды с ее традициями или не придерживаются каких-либо предвзятых взглядов. В этом случае инфаркт им обеспечен, так как они найдут у своего чада все, кроме того, о чем когда-то мечтали задолго до его рождения. Во всяком случае, мечты и идеалы Водолея, его детские затеи и подростковые намерения или будущие взрослые планы и цели ни в малейшей степени не связаны со старым мещанским образом жизни или мировоззрением.

Родителям поневоле приходится знакомиться со сверхмодными идеями своих детей, удивляться тезисам их новейшей морали, где идеальным образцом союза считаются не семейные узы, а дружба и товарищество. Водолеи – это идеалисты и утописты, философы и социальные мыслители, это революционеры, бунтари и мятежники – в зависимости от их духовного уровня. Внутренние убеждения они защищают с большим упорством и настойчивостью, умело, логично и аргументированно, также как друга и единомышленника или близкого человека, или любую работу, или дело. Все отношения с внешним миром и окружающей средой зависят у них от чувства симпатии или антипатии.

Часто долгое и длительное общение с одними и теми же людьми может довести их до одинакового с ними образа мышления, хотя в спорах, дебатах и дискуссиях Водолеи проявляют своеволие и своенравие, а их упрямство может дойти до строптивости и твердолобия.

Свои собственные идеи и планы они будут осуществлять, не считаясь с любой оппозицией, твердо и уверенно, с исключительной оригинальностью. По темпераменту они сангвиники с большой телесной и духовной подвижностью. А по характеру они спокойные и терпеливые, мягкие и нежные, очень трудолюбивы, но с ограниченной работоспособностью. Вечно они переполнены множеством всяких идей, но – перегружаться лишними работами не любят. Перенапряжение и переутомление для них противопоказаны.

Большая часть Водолеев открыты, меньшая – скрытны, но все они артистичны и привлекательны. Их нрав никакому контролю не поддается. Они часто принимают на себя удары судьбы, испытывая ее превратности, чувствуя неустойчивость своего положения. Часто все их благие порывы и намерения разбиваются о повседневные мелочи реальной жизни. А невозможность примирить требования своего духа и души с житейскими претензиями и нуждами нередко угрожает опасностью ломки всего их существа.

Одна примечательная черта их натуры почти всегда выводит Водолеев из этого положения: они не теряют желания бороться и преодолевать свои невзгоды. Самое сильное у них – усилие воли. Они живут больше духом, нежели телом, живут больше будущим, чем настоящим.

Водолей – тип довольно трудный для понимания. У них мы найдем внешнюю природу Близнецов и индуктивные качества Весов. Их внутренняя и духовная природа удивительна, но для ее раскрытия требуется какой-то сильный импульс извне, со стороны, который и заставил бы их действовать. До того, пока они не откроют в себе духовную силу, Водолеи слабы и беспомощны, и лишь потом они способны на великие дела, ибо их душа быстро окрыляется и вырастает.

Всегда мы должны помнить, что эти дети до конца своей жизни останутся яркими индивидуальностями и оригиналами. Часто бывает так, что во время беседы нам кажется, что они уже во всем с нами согласны, а потом, в конце разговора, они внезапно могут принять совершенно другое решение. При общении с Водолеями особо строгих правил не существует, и все же следовало бы узнать заранее сильные и слабые черты их характера и нрава.

Уязвимыми местами их организма и тела являются голень и ножные икры, суставы лодыжек и сочленения пальцев ног, а также сердце, сердечно-сосудистая и вся нервная система. Кроме только что упомянутых болезней частей тела и организма, им свойственны простудные и аллергические заболевания, неврастения, спазмы, паралич.

Вронский С.А. Астрология: суеверие или наука?


Все правильно! Так оно и есть. Я очень хорошо знаю одного такого Водолея. Это – я сам. Но и это еще не все. У меня три сына – все разные. Я просмотрел их астрологические характеристики в соответствии с днями рождения. Все сошлось чуть ли не один к одному. Но констатация фактов (или простых совпадений) не дает ответа на вопрос: почему все происходит так, а не иначе. А ответ, видимо, следует искать в самой космической природе Микрокосма в его неразрывной связи с Макрокосмом. Целенаправленное получение определенной дозы энергии в соответствии с расположением в данный момент планет и звезд может вполне влиять на конкретную комбинацию генов и закрепленный алгоритм генетической информации, что в конечном счете отражается на неповторимых чертах человеческого характера.

Известны различные виды гороскопов. Но просто составить гороскоп – мало; требуется умение (можно даже сказать – искусство) его правильно истолковать: ведь приписываемое планетам влияние является противоречивым и запутанным. Основой любого гороскопа является круг Зодиака, то есть совокупность созвездий, расположенных вдоль эклиптики – видимого пути Солнца среди звезд в течение года. Эти созвездия называются зодиакальными. Их имена соответствуют знакам Зодиака. Сами созвездия занимают разное число градусов в этой полосе. А вот соответствующие знаки Зодиака все одинаковой протяженности в 300, и их отсчет начинается от точки весеннего равноденствия. Поскольку же из-за прецессии эта точка меняет свое положение на эклиптике (и соответственно среди звезд), делая полный круг за 25 700 лет, то положение знаков Зодиака относительно созвездий меняется со временем.

Примерно 2000 лет тому назад, когда было произведено разделение круга Зодиака на 12 одинаковых частей-знаков, они находились примерно в тех местах, где и соответствующие им созвездия. В настоящее время наблюдается разрыв примерно в один знак зодиака, к тому же имеется еще и 13-е зодиакальное созвездие – Змееносец, которому не соответствует никакой знак.

Один из самых распространенных видов гороскопов – месячный. Он делит всех людей на двенадцать групп в зависимости от того, в каком знаке Зодиака находилось Солнце в момент рождения человека. Астрологи считают, что этот гороскоп не столько определяет судьбу, сколько черты характера, основные физические и духовные особенности: сложение тела, умственные способности, темперамент. Все люди делятся на 12 групп в зависимости от того, в какой месяц, то есть в какое время года родился человек. И даже официальная наука не против того, что это может оказаться дополнительным фактором, влияющим на формирование будущей личности. Кроме того, если человек родился в день, близкий к переходу Солнца из знака в знак, считается, что ему будут присущи качества, которые обуславливают оба данных знака. Согласно некоторым источникам, период перехода может длиться неделю. Безусловно, указанные влияния знаков Зодиака нельзя считать фатальными, они могут обнаружиться только с некоторой вероятностью.

Однако если принять точку зрения, что знак, в котором находится Солнце в момент рождения человека, влияет на формирование личности, то и тогда практическое использование месячных гороскопов сильно затруднено: многие высказывания в них являются весьма неопределенными, встречаются и прямые противоречия. Так, например, о людях, родившихся под знаком Водолея, согласно приведенному выше источнику, говорят, что они обладают склонностью к наукам и могут иметь успех в области изобретательства. Утверждается также, что они часто могут оставить свое имя в анналах истории. Между тем в других астрологических книгах, например, в изданной около 200 лет тому назад книге под названием "Месячные планеты и их влияние на человека", утверждается, что "мужчина, рожденный под этим знаком, является ленивым и медлительным, ему совсем не нравится напрягаться и работать в поте лица. Все его поведение указывает на то, что он не будет победителем". В другой же книге "Практическая астрология" (автор – Фрелинг), изданной в сороковые годы на немецком языке, говорится, что эти люди являются романтиками, эксцентриками, реформаторами и революционерами.

Еще более разительно отличаются характеристики Тельцов. Фрелинг утверждает, что они любят жизнь, полную развлечений, являются "прожигателями жизни", а в книге "Месячные планеты" сказано, что они "живут скромно, не любят пьянствовать. Благодаря своему порядочному образу жизни они достигают глубокой старости и живут долго". Впрочем, опытные астрологи стараются объединить противоречивые сведения, и это, как правило, им удается. Так, насчет людей, родившихся под знаком Водолея, они утверждают: "В каждом Водолее есть что-то от изобретателя, человека, поглощенного идеей усовершенствования. Вместе с тем это мечтатель-фантаст. У него бывают периоды лени и бездействия". Относительно Тельца категоричность смягчается следующим образом: "...капризен, упрям по мелочам, но в общем обладает характером податливым, спокойным и терпеливым. Женщинам свойственна любовь к красивым вещам. Они разорительны для своих поклонников".

Несколько отличающимся является гороскоп друидов (или галльский). Знаки этого гороскопа соответствуют не различным животным, а деревьям. Всего их 22, и почти каждый знак имеет два периода действия в течение года. Этот гороскоп строится в зависимости от того, на каком расстоянии от Земли, согласно космологии друидов, находится Солнце в день рождения человека.

Профессиональные астрологи предпочитают составлять гороскоп для каждого конкретного человека, принимая во внимание точное время и географические координаты его места рождения. Некоторые астрологи даже считают, что для того, чтобы гороскоп оказался правильным, требуется точность до минуты (во времени) и до нескольких километров (в расстоянии). Согласно астрологическим канонам, только такой гороскоп и является настоящим. Месячные и годичные гороскопы, принимающие во внимание только положение Солнца, являются лишь характеристиками отдельных групп людей. В старину гороскопом вообще называлась не схема расположения небесных светил, не различные таблицы характеристик групп людей, а только восходящее зодиакальное созвездие в месте и в момент рождения человека.

Основа персонального гороскопа или натальной карты – изображение круга Зодиака, на которое нанесены знаки Зодиака и отмечен асцендент – восходящая точка эклиптики (или, что, по сути, то же самое – восходящая точка Зодиака) (рис. 98). Далее на этом же круге отмечаются местонахождения планет (рис. 99), каждая из которых "отвечает" за конкретную сторону жизни человека. В целом гороскоп дает только общее впечатление о влиянии планет и при его толковании требуется известная доля импровизации и интуиции. Ниже даются характеристики планет, заимствованные из упомянутой книги Фрелинга.

Солнце – светило мужского пола. Творческая сила, способность к развитию. Слава, честь, уважение. "Хорошее" Солнце: честность, откровенность, рыцарство, благотворительность, любезность, смелость, героичность; энергия, предприимчивость, друзья. "Плохое" Солнце: хвастовство, высокомерие, лицемерие, духовная пустота, злоупотребление властью, разврат, болезни, слабая жизненная сила.

Луна – светило женского пола. Душа, мораль, семейность, страсти, особенно любовные, вообще отношение человека к женскому началу. "Хорошая" Луна – подвижность тела и духа, высокая мораль. "Плохая" Луна – трусость, неверность, ложь, нездоровая фантазия, лень, отсутствие сообразительности, частые изменения настроения, пессимизм.

Меркурий – светило, которое принимает пол той планеты, с которой он связан. Интеллект, ум, язык, способности к адаптации, нервная система, наука, искусство, ремесло, ораторское искусство.

Венера – благотворительница, женского пола. Эротика, искусство. "Хорошая" Венера. Стремление помочь, веселье, способность восхищаться красотой, гармония, кротость, нежность (особенно при хорошем влиянии Луны). "Плохая" Венера. Дисгармония в половой жизни, беспечность, повер-хностность, гипертрофированное стремление к роскоши. Если Венера влияет на важный пункт в гороскопе (или на планету), то она придает ему свое специфическое значение: кротость и нежность, уже не связанную именно с эротикой и искусством.

Марс – планета мужского пола. Злодей. Энергия, сила. Смелость, предприимчивость, физическая сила, сила воли, преувеличения, стремление к власти, ссоры, хвастовство, гнев, грубость в половой жизни. "Хороший" Марс. Большая жизненная сила, настойчивость, дерзость, стремление к действию. "Плохой" Марс. Плохое влияние Солнца – суета, трата жизненных сил; Меркурия – хвастовство с желанием солгать; Юпитера – трудности в жизни, тяжелая жизненная борьба.

Юпитер – планета мужского пола. Благотворитель. Мудрость, великодушие, рост в духовном и физическом плане, религиозность. "Хороший" Юпитер – правдолюбие, мудрость, сочувствие. "Плохой" Юпитер – плохие моральные качества, лицемерие, суеверность, пустота, неистовство в материальных и сексуальных наслаждениях.

Сатурн – планета мужского пола. Злодей. Углубление, затвердение, концентрация, проверка, выдержка, решение. "Хороший" Сатурн – бережливость, внимательность, точность, устойчивый успех. "Плохой" Сатурн – скупость, эгоизм, педантичность, лень, мстительность, принципиальное противодействие, меланхолия.

Нептун – планета женского пола. Злодей. Влияет на чувства. Современные астрологи считают, что это планета "божественной любви". "Хороший" Нептун – романтизм, пророчество, трансцендентные способности. "Плохой" Нептун – истерия, смятение, обман, потеря энергии, перверсии в половой жизни.

Уран – планета мужского пола. Проявляет неожиданные, внезапные воздействия. Более поздние источники считают, что он доводит до человека "мудрость Космоса" и ее влияние часто является для человека совершенно неожиданным. "Хороший" Уран – эксцентричность, оригинальность, сенсация, интуиция, гениальность, способность к открытиям. "Плохой" Уран – катастрофы, парализующие, импульсивные, экстраординарные, разрушающие действия.

В более поздних изданиях рассматривается и влияние Плутона. Он считается олицетворением космической энергии. В хорошем аспекте он открывает доступ к разного вида космическим энергиям. Так, например, при хороших аспектах с Венерой и Марсом он может дать экстрасенсорные способности, при плохом с Марсом – неуверенность и дискомфорт (слабая энергетика).

Таким образом, планета может оказаться "хорошей" или "плохой". Согласно астрологическим канонам, это случается, когда планеты образуют между собой определенные углы – аспекты, из которых каждый имеет свое название. Главные из них следующие: 00 – соединение, 1800 – противостояние, 900 – квадратура, 1200 – тригон (трин, трайн), 600 – секстиль. Тригон и секстиль считаются счастливыми, гармоничными, квадратура – дисгармоничным, несчастливым. Если имеет место соединение светил, все зависит от того, какие планеты соединились, какая из них более важна для данного гороскопа, какие аспекты они получают от других планет. Планета считается более сильной, если на нее посредством аспектов влияют сразу несколько планет, если она находится близко к асценденту, зениту, или в важном для данного человека доме и т.д.

Играет роль и то, имеет ли она на данный момент прямое или обратное движение, находится ли планета в собственном доме или "в изгнании". Сложнее обстоит дело с противостоянием. Древние астрологи считали, что такая конфигурация не приводит к добру, однако более поздние источники (например, тот же Фрелинг) считают, что в данном случае будут иметь место сильные противоречия, разрешение которых необходимо для дальнейшего развития. В этом отношении вообще интересна концепция Авессалома Подводного, согласно которой (почти как и у Иоганна Кеплера) не существует фатально отрицательных аспектов и влияний планет. Ими задаются только более или менее выгодные правила "игры с роком". При этом слишком благоприятные правила такой игры не способствуют мобилизации творческих сил, а следовательно, и развитию. Птолемей в своем "Тетрабиблосе" дает следующее основание существованию аспектов и их влиянию:

Взаимная конфигурация придается всем частям, диаметрально удаленным друг от друга и содержащим между собой два прямых угла или шесть знаков, или сто и восемьдесят градусов; также существует во всех частях, находящихся на треугольном расстоянии друг от друга, содержащем между собой один и треть прямого угла или четыре знака, или сто и двадцать градусов; также во всех частях на квадратичном расстоянии друг от друга, содержащем между собой прямой угол точно или три знака, или девяносто градусов; а также во всех частях на расстоянии шестиугольника друг от друга, содержащем между собой две трети прямого угла или два знака, или шестьдесят градусов (рис. 100). Эти несколько расстояний взяты по следующим причинам: расстояние диаметральное, однако ясно само по себе и не нуждается в дальнейших пояснениях; – а что касается остальных, то после того как диаметрально удаленные точки соединены прямой линией АВ, пространство двух прямых углов, вместившее диаметр, затем должно быть разделено на кратные части двумя наибольшими делителями; то есть другими словами, на половинки АFС, СFВ и на трети АFТ, DFЕ, ЕFВ. Соответственные отношения с каждой стороны промежуточного квартиля АС, сформированного одним прямым углом АFС, также будут производить квартиль АС, если к секстилю АD прибавлено отношение DС, равное половине секстиля и тригон АЕ, если к квартилю АС прибавлено отношение СЕ, равное третьей части квартиля. Из этих конфигураций тригон и секстиль названы гармонирующими, поскольку они установлены между знаками одного класса, будучи сформированными между или только женскими или только мужскими знаками. Противостояние и квартиль рассматриваются как диссонирующие, поскольку они являются конфигурациями между знаками не одного класса, но различной природы и пола.

Конечно, теперь нам следует выяснить, какие знаки являются мужскими, какие – женскими. Согласно Птолемею, это определяется следующим образом:

Кроме того, среди двенадцати знаков шесть называются мужскими и дневными и шесть – женскими и ночными. Они расположены в чередующемся порядке, один за другим, как день, который следует за ночью и как будто самец спаривается с самкой. Начало, это уже было сказано, принадлежит Овну, так как влага весны подготавливает наступление других сезонов. И как повелевает пол самца, и как активный принцип превосходит пассивный, так же знаки Овна и Весов рассматриваются последовательно как мужские и дневные. Эти знаки характеризуют равнодействующую окружность и из них исходит основное изменение и наиболее мощное переплетение всех вещей. Знаки, непосредственно следующие за ними, являются женскими и ночными, а остальные последовательно расположены как мужские и женские, в чередующемся порядке.

Следующий компонент гороскопа – это система домов. Существуют несколько таких систем, самая простая из них – система равных домов, представляющая собой круг, разделенный на 12 одинаковых секторов (рис. 101). Каждый сектор отвечает за конкретную сторону жизни человека.

1 дом. Собственное "Я", личность, жизненная сила, состояние здоровья и тела, характер – одним словом, все, что характеризуют на более "дилетантском" уровне месячные гороскопы.

2 дом. Деньги, материальное положение, подвижность, связанная с этим свобода личности, материальные и сексуальные наслаждения.

3 дом. Характер, душа, способ мышления, повседневная жизнь, интеллект, небольшие путешествия, родственники (братья, сестры, кузены), язык, договоры, письма, писания, транспортные средства.

4 дом. Родители, неподвижность, старость. Семейная жизнь, квартира, родина, наследство, оккультизм.

5 дом. Дети, сексуальность, незаконные связи с противоположным полом, счастливый случай, авантюры, лотерея, спорт, игра, пари, увеселения. Искусство, педагогика.

6 дом. Активность, работа, путешествия, свекр или тесть, дяди, тети. Чиновники, подчиненные, служба, болезни; мелкие домашние животные.

7 дом. Отношения с противоположным полом. Брак. Муж или жена. Отношения с сотрудниками, товарищами и т.д. Общество, критика, популярность, открытые противники, гражданские судебные дела.

8 дом. Смерть, все связанное с ней. Опасные для жизни заболевания, наследство, сексуальность, черная магия. Сектантизм. Масонство, оккультизм, мистицизм.

9 дом. Дух, характер, стремление к дальнейшему развитию. Мировоззрение. Философия, религия, оккультизм, белая магия. Большие путешествия, гражданские судебные процессы, адвокат. Шурин, свояченица. Крупные животные.

10 дом. Мать, слава, честь, власть. Успех или поражение в борьбе за материальное существование. Начальство, поощрения и награды. Цель, род занятий.

11 дом. Отношения с людьми, дружба, протекция, покровители, надежды и пожелания. Увеселения.

12 дом. Криминальность, социальность. Тюрьма. Тайные противники, интриги, теща. Болезни. Благотворительность. Религиозность, оккультизм, мистика. Большие путешествия. Крупные животные.

Далее необходимо поместить систему домов на круг Зодиака так, чтобы середина первого дома совпала с асцендентом (рис. 102) Чаще с асцендентом совмещают "вершину" 1 дома – начало его первого градуса. Каждая из планет таким образом попадает в какой-нибудь из домов и по-своему влияет на определенную сторону жизни человека. Следует учесть, что это не единственная система домов. Кроме системы равных домов, очень распространена и так называемая система неравных домов, которую получают, разделяя на 12 равных частей горизонт. Потом от этих точек деления проводятся вертикальные линии к зениту и отмечаются точки их пересечения с эклиптикой (кругом Зодиака), которые и являются пунктами разграничения домов. В общей сложности в литературе упоминаются около 50 (!) систем домов, из них в наши дни активно используется примерно 20.

Становится понятным, почему нужно знать по возможности точно время и место рождения – они определяют местонахождение асцендента. Примерно за два часа асцендент перемещается на целый знак, а ощутимые изменения его положения могут возникнуть уже в течение получаса. Кроме того, знание места рождения может оказаться важным и при расчете некоторых систем домов. Таким образом, наш гороскоп составлен и можно приступить к его толкованию.

Толкование гороскопов часто начинается с рассмотрения общей характеристики расположения планет. Согласно книге Фрелинга, если планеты сосредоточены в основном в верхней части гороскопа, считается, что главные события жизни будут хорошо известны окружающим. Так же, если планет больше в левой (восточной) части гороскопа, основные события жизни происходят в первой ее половине. Конечно, если планеты находятся в основном в нижней или западной частях, тогда все наоборот.

Более подробное рассмотрение гороскопа обычно следует начать определением "Лорда рождения" – планеты, которая господствует над первым домом и находится близко к асценденту. Если же, как в нашем случае, первый дом пустой, выясняется, какая планета имеет дом (каждая планета в некоторых знаках "у себя дома", в "изгнании", "возвышении" или "понижении") в знаке, находящемся напротив первого дома. В нашем примере это Близнецы – дом Меркурия. Соответственно, жизнь данного человека (назовем его N) будет тесно связана с качествами, соответствующими Меркурию. Часто такие люди являются дипломатами или бизнесменами.

В данном гороскопе сам Меркурий находится во втором доме, который, как это уже было отмечено выше, управляет всем, что касается материальных благ. Тем самым устанавливается связь между первым домом (поскольку он находится против дома Меркурия), определяющим главное в жизни, и вторым домом, который таким образом тоже приобретает первостепенную важность. Его значение усиливается еще и тем, что в этом доме сосредоточено целых три планеты. Древние такую конфигурацию (если в доме три и больше планет) называли стеллариумом. И добывать материальные блага наш N в данном случае, конечно, будет занятиями, которыми управляет Меркурий, – то есть дипломатией, торговлей, ораторским искусством, наукой. Правда, поскольку предполагается, что в добывании материальных благ он преуспевает и этот успех является устойчивым (на это указывает тритон Меркурия с Сатурном), то существующие оклады научных работников вряд ли дадут основание думать, что наш N будет ученым по профессии.

Добывание средств нашего условного клиента связано с повседневной работой – Сатурн в шестом доме, и в выборе средств к достижению своих целей этот человек не очень разборчив: Луна в третьем доме образует плохой аспект с тем же самым Сатурном и указывает на отрицательные моральные качества. Поскольку Юпитер в седьмом доме в квадратуре с Венерой в третьем доме, то можно ожидать, что брачная жизнь N по этой причине не будет удачной. Эти качества, очевидно, могут привести данного человека также к постоянному страху перед смертью, на что указывает противостояние Меркурия и Солнца с Нептуном в восьмом доме.

Подобным же образом рассматриваются и влияния других планет и домов, но мы в качестве примера привели только самые главные и очевидные тенденции данного гороскопа. Полное исследование гороскопа занимает существенно больше времени. Принимаются во внимание влияния и всех остальных планет, лунных узлов, двигается ли планета в прямом или обратном направлениях. Важно также, находится ли планета в собственном доме, изгнании, возвышении или понижении. Если требуется найти ответ насчет вещей, касающихся какого-то дома, но он пустой (в нашем примере такие 1, 4, 5, 9, 10, 11 и 12 дома), тогда можно определить, какой знак Зодиака находится против данного дома. Например, в нашем случае двенадцатый дом, соответствующий криминальной стороне жизни, находится против Тельца, в котором дом имеет Венера. Соответственно, слишком большие траты на женщин могут нашего N довести даже до скамьи подсудимых. То, что такие траты ему по душе, может указать секстиль Венеры с Меркурием, который находится во втором доме. Важно также, какие аспекты образуют планеты с важными пунктами в гороскопе, например, с асцендентом, зенитом и т.п. Приведенная здесь схема толкования гороскопа далеко не единственная. Примером может служить хотя бы метод д-ра Хофа, описанный в вышецитированной книге С. А. Вронского "Астрология – суеверие или наука?" (М., 1991).

Часто (особенно в старые времена) гороскопы изображались и в четырехугольной форме (см. гороскоп, составленный Кеплером: рис.97). Пользуются и так называемой космограммой, которая принимает во внимание только аспекты планет и их местонахождения в знаках Зодиака. Планеты, имеющие между собой аспекты, соединяются линиями. Если снаружи отметить и расположение домов, опять получим гороскоп (рис.103).

Конечно, такой гороскоп дает только главные линии судьбы. Для того, чтобы делать более точные предсказания на какой-то промежуток времени, составляются годичные и месячные гороскопы. Годичный гороскоп составляется на момент времени, когда Солнце занимает ту же координату, как и в гороскопе рождения, притом в данном гороскопе середина первого дома совмещается с Солнцем. Такой гороскоп всегда рассматривается совместно с гороскопом рождения. Считается, что он уточняет то, что предсказано в гороскопе рождения на период Ђ6 месяцев от дня рождения. В таком гороскопе рассматриваются как отношения с планетами гороскопа рождения, так и между собой. Особенную важность приобретают те аспекты, которые имеют место как в гороскопе рождения, так и годичном гороскопе. Подобным образом составляется и гороскоп для каждого месяца. В этом случае гороскоп составляется на момент, когда Луна имеет ту же координату, что и в гороскопе рождения.

И, наконец, астрологами составляются и предсказания для каждого дня. Это делается с помощью так называемых транзитов – когда какая-то планета принимает ту же координату, какую имеет та же самая или другая планета в гороскопе рождения. Так, например, если происходит транзит Сатурна через Венеру, можно

ожидать, что в данное время усилится влияние Сатурна на области, управляемые Венерой (эротика, искусство). Если это происходит, например, в седьмом доме, можно ожидать, что это будет сильно касаться супружеской жизни. Если, например, сам Сатурн в данном случае еще и получает плохие аспекты, следует очень остерегаться семейных ссор.

Люди относятся к астрологии по-разному. Одни бесконечно верят в ее возможности, другие так же бесконечно убеждены в "лженаучности" этого древнего учения. А еще некоторые относятся к ней почти безразлично. Соответственно, и спор об истинности астрологии не утихает уже почти со времен зарождения астрологии. Уже в Древнем Риме астрологию критиковали весьма основательно. Ситуация не изменилась и в наши дни. Однако теоретические аргументы нас не могут убеждать ни в истинности, ни в порочности астрологических предсказаний. Каждый аргумент, высказанный противниками астрологии, весьма успешно парируется ее адептами. Попробуем рассмотреть самые важные и распространенные из них.

Первый, как некоторые считают, самый "убийственный". Гелиоцентрическая система Коперника совершенно не стыкуется с теоретическими основами астрологии, которые основываются на геоцентрической системе мира. Контраргумент – несмотря на свою ошибочность, та же самая геоцентрическая система Птолемея весьма успешно служила людям много столетий и позволяла рассчитать координаты светил с большой точностью. Для достижения практических целей не обязательно пользоваться совершенно правильными теориями. Достаточно, чтобы они отражали только часть истины. В случае с геоцентрической системой мира это адекватное (или почти адекватное) описание видимых движений светил. Нечто подобное может иметь место и в случае с астрологией. Поскольку она занимается изучением влияния планет на земные события, для нее могут оказаться важными именно видимые положения и движения светил.

Второе. Небесные светила, за исключением Солнца и Луны, находятся так далеко и их влияние так ничтожно, что совершенно неразумно считать, что они могут каким-то образом повлиять на земные процессы,тем более на судьбу отдельных людей. Возражений тут могут быть целых три. Во-первых, отдаленность небесных светил не мешает регистрировать их гравитационное и световое влияния. Во-вторых, например, в случаях резонанса даже от малых влияний могут очень зависеть конечные результаты. В-третьих, положения небесных светил могут моделировать какие-то другие процессы – например, изменения солнечной активности или ритмы живых организмов.

Третье. "Парадокс близнецов". Не всегда судьба для людей, которые родились одновременно, скажем, в одном родильном доме, является одинаковой, хотя их гороскопы, конечно, не отличаются. Сами астрологи, однако, считают, что даже разница во времени, которая все-таки имеет место, уже достаточна для некоторого различия. Также эти люди могут иметь одинаковые потенции, но находиться в разных условиях. В этой связи уместно вспомнить один из аргументов, высказанный уже в древние времена, что если одновременно родится и король и осел, каждый из них будет иметь разную судьбу. Данный аргумент вы двигался против астрологии, при этом забывалось, что осел может оказаться королем среди ослов (и, к сожалению, наоборот). Схожие мысли высказал и Птолемей в своем "Тетрабиблосе": судьба людей может быть разной при одинаковых гороскопах, если они родились в разных общественных прослойках. Кроме того, некоторые астрологические источники как раз считают, что люди, родившиеся в одном месте и в одно время, имеют одинаковую судьбу.

Четвертое. У людей, которые погибли, скажем, в результате кораблекрушения, не могут быть одинаковые гороскопы. Однако они все погибают при одних обстоятельствах. Птолемей на это возразил, что было бы неплохо, прежде чем вступить на палубу корабля, поинтересоваться гороскопом корабля. Возможен и случай, когда во всех соответствующих гороскопах присутствует один-единственный признак – признак смерти в данный момент.

И еще один аргумент. Существует много различных систем гороскопов, а влияния планет иногда очень неоднозначны и противоречивы. В общем случае это должно давать большой разброс при их толковании. Астрологи же возражают, что различные системы лишь дополняют друг друга, что в каждом конкретном случае различные гороскопы не противоречат друг другу. Так же если гадание по гороскопам имеет много общего с другими видами гадания, то конкретный выбор системы гороскопа уже не так уж важен. Таким образом, только опыт может нам подсказать, можно ли верить астрологии и если можно, то в какой степени. Безусловно, такое сложное явление, как судьба человека, весьма трудно поддается формализации и тем самым статистическим исследованиям. По этой причине результаты таких исследований являются весьма неоднозначными и часто зависят как от использованной методики, так и от убеждений автора. Американские исследователи Р. Б. Килвер и Р. А. Янна приводят данные, согласно которым предсказания девяти основных американских астрологических журналов выполняются только на 11%, что, как нам кажется, мало, даже если имели бы место просто совпадения. В то же время, например, группа исследователей из Пулковской обсерватории сообщает о найденной связи между профессией людей и месяцем и годом (по китайскому календарю) их рождения.

Таким образом, ответ на вопрос – полезно ли заниматься астрологией и гаданием – не однозначен. Конечно, можно считать, что хороший гороскоп, если человек в него верит, может послужить мощным стимулом для достижения цели. Ну, а если гороскоп окажется плохим? Очевидно, результат может быть совершенно противоположным. Потенциально опасна и точка зрения, согласно которой наша судьба предрешена и определяется небесными светилами. Такая позиция позволяет иногда оправдать (по крайней мере в собственных глазах) поступки, которые при других условиях никак не оправдывались бы и даже не замышлялись. Причина тому – согласно данной точке зрения: небесные светила несут и ответственность за наши действия*.

У профессиональных астрономов и ученых других профессий накопилось немало вопросов к астрологам, на которые последние не всегда дают вразумительные ответы. Американский астроном Эндрю Фрэнкной попытался суммировать такие "трудные", с его точки зрения, вопросы.

Возможно ли, чтобы каждый день для одной двенадцатой части населения Земли выпадала одинаковая судьба? Как известно, существуют 12 знаков Зодиака. Поклонники ежедневной "колонки астрологов" (которая печатается более чем в 1200 американских газет) полагают, будто, раскрыв утром газету и найдя там раздел о своем знаке, они получат полезные сведения о том, какой день им предстоит сегодня. Но подумайте, ведь ответ, который вы прочли, относится не только к вам лично, но еще примерно к одной двенадцатой населения планеты. Сейчас на Земле живут более пяти миллиардов человек. Значит, предсказание обращено примерно к 417 миллионам человек. И так каждый день. Понятно, что астрологи стараются излагать свои предсказания по возможности туманно: ведь надо всем угодить!

____________________
* См.: Шмелд И.К. Как составляются и толкуются гороскопы // Вселенная и мы. Вып. 1. М., 1993; Вып. 2. М., 1994.

 

Почему для астрологии важен момент рождения, а не зачатия? Многим из нас астрология кажется наукой потому, что она основывает гороскопы на точной цифре: времени рождения. Много веков назад, когда только появилась астрология, момент рождения считался моментом возникновения новой жизни. Но теперь-то мы знаем, что роды – лишь кульминация длительного, девятимесячного процесса развития в утробе матери. Наука показала, что многие черты личности закладываются задолго до рождения. Современные астрологи продолжают считать исходной точкой именно момент рождения скорее всего только потому, что так удобнее. Почти всякий клиент астролога знает, когда он появился на свет, но редко кто может сказать, когда он был зачат (не говоря уже о том, что такой вопрос может быть расценен как не совсем приличный!). Если мы видим, что ребенок должен родиться в астрологически неблагоприятный момент, нельзя ли сразу поместить новорожденного в оболочку из сырых бифштексов – "экранировать" от дурного влияния слоем мяса, моделирующим стенки матки и брюшную стенку матери? А потом вынуть ребенка оттуда, когда небесные знаки станут более благоприятными.

Если астрологи способны предсказывать будущее, почему никто из них не воспользовался своими способностями для быстрого обогащения? Некоторые астрологи отвечают, что они могут предсказывать лишь общие тенденции, а не конкретные события. Другие говорят, что могут предсказать крупные события, а мелкие, вроде выигрыша в лотерею, ускользают от предсказания. Но и при таких условиях астрологи могли бы быстро накопить миллиарды, предсказав поведение акций на бирже или цен на недвижимость хотя бы в общих чертах – будут ли они расти или падать.

Можно ли считать верными гороскопы, составленные до того, как были открыты три самые удаленные планеты Солнечной системы? В большинстве гороскопов, публикуемых газетами, учитывается только положение Солнца в Зодиаке на момент рождения. Но многие "серьезные" астрологи утверждают, что в гороскопе необходимо учитывать влияние всех крупных тел Солнечной системы, и в том числе – Урана, Нептуна и Плутона, которые были открыты лишь в 1781, 1846 и 1930 годах соответственно. Но ведь авторитет астрологии среди верующих в нее в значительной степени основан на том, что это искусство многие столетия давало точные предсказания судеб. Как же так? Если Плутон не был известен до 1930 года, то, выходит, все ранее составленные гороскопы врали? И почему неточности в гороскопах не привели астрологов к открытию Урана, Нептуна и Плутона задолго до того, как их открыли астрономы? А что, если астрономы откроют в Солнечной системе десятую планету? И почему в гороскопах не учитывается влияние больших астероидов и крупных лун, обращающихся вокруг планет-гигантов?

Не ведет ли астрология к дискриминации? Ведь члены цивилизованного общества отвергают все системы взглядов, по которым о человеке судят по его полу, цвету кожи, религии, национальности или другим признакам, полученным от рождения, не зависящим от воли самого индивидуума. Астрологи берутся оценивать человека по случайному признаку – расположению небесных объектов в момент рождения. И если при этом кто-то получает отказ в приеме на работу только потому, что он рожден под знаком Льва, или отказ сочетаться браком потому, что невеста родилась под знаком Девы, то разве это с моральной точки зрения не то же самое, что отказ в работе негру или запрет жениться на верующей католичке?

Почему разные школы астрологии так расходятся в своих теориях? Споры идут по самым фундаментальным вопросам: надо ли учитывать прецессию земной оси, какие планеты и другие небесные тела должны учитываться при составлении гороскопа и – самое важное – какие небесные явления с какими чертами характера и судьбы связаны. Прочтите предсказания в 10 газетах, зайдите к 10 астрологам, и скорее всего вы получить 10 разных толкований. Если астрология – действительно наука, почему ее приверженцы за тысячелетия сбора и интерпретации данных не пришли к единой теории? Обычно научные теории со временем подвергаются проверке и уточнению, вырабатывается единое мнение. Напротив, системы верований, основанные на предрассудках или личной вере, с течением времени имеют тенденцию к расколу. Образуются противоборствующие секты.

Если астрологическое влияние основано на какой-то из известных физикам сил, почему особое значение придается именно влиянию планет? Разные школы астрологии считают, что планеты влияют на людей тяготением, приливными силами или магнетизмом. Но ведь даже студент-первокурсник может рассчитать величину этих сил. И такие расчеты, конечно, есть. Они показывают, что акушер, принимающий ребенка, оказывает на него гравитационное воздействие в шесть раз более сильное, а приливное действие в два триллиона раз более сильное, чем Марс. Масса врача несоизмеримо меньше, чем планеты, но она горазда ближе к ребенку.

Если же астрологическое влияние осуществляется неизвестной силой, может ли быть такое, что эта сила не зависит от расстояния? Все известные дальнодействующие силы ослабевают с расстоянием. Тысячи лет назад люди об этом, по всей видимости, еще не знали, поэтому неудивительно, что в астрологии считается, будто влияние планет никак не зависит от их расстояния до нас. Марс влияет на ваш гороскоп одинаковым образом и в то время, когда он по ту же сторону от Солнца, что и Земля, и в тот период, когда он в семь раз дальше от нас, то есть по другую сторону от Солнца. Обнаружить силу, действие которой не зависит от расстояния, – такое потрясло бы основы физики!

А если уж астрологическое влияние действительно не зависит от расстояния, тогда почему астрологи не учитывают влияния звезд, галактик и квазаров? Французский астроном Жан-Клод Пекер считает, что астрологи не должны ограничиваться одной Солнечной системой. Неужели миллиарды огромных небесных тел, разбросанных по Вселенной, не добавляют свое действие к влиянию нашего крошечного Солнца, планет и Луны? Можно ли считать гороскоп полным, если в нем не учтены Ригель, пульсар в Крабовидной туманности и галактика Мессье 31?




ЧАСТЬ 3. В БЕЗДНАХ ВСЕЛЕННОЙ



 

Но для бездн, где летят метеоры,
Ни большого, ни малого нет,
И равно беспредельны просторы
Для микробов, людей и планет.
В результате их общих усилий
Зажигается пламя Плеяд,
И кометы летят легкокрылей,
И быстрее созвездья летят.
И в углу невысокой Вселенной,
Под стеклом кабинетной трубы,
Тот же самый поток неизменный
Движет тайная воля судьбы.
Там я звездное чую дыханье,
Слышу речь органических масс
И стремительный шум созиданья,
Столь знакомый любому из нас.
Николай ЗАБОЛОЦКИЙ

 

СИЛА, КОТОРАЯ ДВИЖЕТ МИРАМИ

Одна из аксиом современной науки гласит: любые материальные объекты во Вселенной связаны между собой силами всемирного тяготения. Благодаря этим силам формируются и существуют небесные тела – планеты, звезды, галактики и Метагалактика в целом. Форма и структура этих тел и материальных систем, а также относительное движение и взаимодействие определяются динамическим равновесием между силами их тяготения и силами инерции масс.

В течение всей своей жизни человек ощущает силу тяжести своего тела и предметов, которые ему приходится поднимать. Одной из главных забот, с которыми сталкиваются люди, летая в околоземном пространстве на самолетах, ракетах и космических аппаратах, является преодоление сил тяготения с помощью различных двигателей с источниками энергии. И вместе с тем, несмотря на обыденность и кажущуюся простоту этого явления, физическая природа сил тяготения неясна. Автором открытия сил тяготения считается Исаак Ньютон (правда, приоритет открытия закона всемирного тяготения оспаривал его современник – известный английский ученый Роберт Гук).

Однако еще на полтора века раньше до Ньютона и Гука знаменитый польский ученый Николай Коперник писал о тяготении: "Тяжесть есть не что иное, как естественное стремление, которым отец Вселенной одарил все частицы, а именно соединяться в одно общее целое, образуя тела шаровидной формы". Аналогичные мысли высказывали и другие ученые. Найденные Ньютоном и Гуком формулы закона тяготения позволили с большой точностью рассчитать орбиты планет и создать первую математическую модель Вселенной. Однако раскрыть природу тяготения авторам этого закона не удалось. В истории известны попытки решить данную задачу. В середине прошлого века Джеймс Клерк Максвелл, создатель теории электромагнетизма, решил, что гравитация (тяготение) имеет электромагнитную природу. Он предложил модель поля тяготения в виде силовых линий в упругой среде (в эфире), заполняющей все пространство. В разработке электромагнитной теории гравитации принимали участие и сделали оригинальные предложения другие известные ученые: Г. Лоренц, А. Пуанкаре и А. Эйнштейн.

Тем не менее до сих пор физическая сущность всемирного тяготения остается тайной. Более того, на сегодня сложилось два по стся тайной. Более того, на сегодня сложилось два по существу диаметрально противоположных взгляда на природу тяготения. Ученые спорят о природе тяготения: имеет ли оно вещественно-энергетический субстрат в виде квантово-полевых образований (материальных частиц – гравитонов) или же обусловлено исключительно геометрическими свойствами пространственно-временного континуума. Так, согласно геометрической трактовке, отнюдь не силы тяготения обусловливают отклонение вблизи Солнца, проходящего мимо светового луча далекой звезды (рис. 104), а искривление пространства-времени под воздействием дневного светила (рис. 105). Кредо тех, кто отстаивает последнюю точку зрения: "Физика есть геометрия"*. Однако такие геометрические понятия, как кривизна, многомерность, неевклидовость, сингулярность и т.п. (это уже было показано в первой части книги), являются чистыми математическими отношениями и не имеют субстанциального выражения.

Сформулированный Ньютоном закон всемирного тяготения стал одним из выдающихся достижений в области естествознания за всю историю его существования. Этот закон позволил на строгой научной основе подвести физическую базу под философско-космистские положения о материальном единстве мира, всеобщей взаимосвязи всех природных явлений. Закон всемирного тяготения оказался одним из самых впечатляющих и вместе с тем загадочных основоположений теоретического естествознания. Применение этого закона позволило добиться выдающихся успехов в области небесной механики (предсказавшей "на кончике пера" существование ранее неизвестных планет) и астрофизики, космологии и практического освоения космического пространства, позволило летательным аппаратам и человеку преодолеть земное притяжение и осуществить прорыв в просторы Вселенной. У некоторых мыслителей возникло даже искушение раздвинуть границы его применения. Так, один из главных представителей утопического социализма, Сен-Симон, пытался перенести действие закона всемирного тяготения на общественные отношения и на данной основе построить свою систему будущего гармонического, свободного от эксплуатации строя.

После опубликования ньютоновских "Начал" обозначилась и стойкая тенденция интерпретировать закон всемирного тяготения как результат и свидетельство божественного проявления. Вот типичный образчик подобного истолкования закона Ньютона, выраженный в стихотворной форме:

...И нарекли человека Ньютоном,
Он пришел и открыл высший закон,
Вечный, универсальный, единственный, неповторимый, как сам Бог,
И смолкли миры, и он изрек: "ТЯГОТЕНИЕ",
И это слово было самим словом творения.

Следует сказать, что на самого Ньютона и дальнейшую интерпретацию его идей оказали заметное влияние так называемые кембриджские платоники (в Кембридже, где творил Ньютон, всегда, вплоть до наших дней, были сильны и живучи мистические традиции). Сам Ньютон – хотя об этом и не любят вспоминать, а тем более писать – также не чурался мистицизма: он всерьез интересовался вопросами астрологии и даже алхимии. Отсюда – и известный иррационализм, невозможность вразумительного объяснения природы гравитационных сил. Кстати, до сих пор нет и общепризнанного объяснения, что же такое сила или что такое масса.

И все же с помощью открытых Ньютоном простейших формул, в которых участвуют только массы тел и силы, действующие между ними, удается описать процессы взаимодействия любых материальных объектов природы – живых и неживых, земных или космических. При этом не следует забывать, что силы взаимодействия между телами не являются у Ньютона какими-то абстракциями (например, векторами, как их изображают при математическом описании задач механики), а вполне материальными силами, возникающими как результат действия масс материальных тел при их ускоренном или замедленном движении. Благодаря своей материальности силы ограничены быстродействием и дальностью действия. Убедиться в этом можно на любом примере. Каждый из нас, пользуясь силой своих мышц, замечает, что их быстродействие ограничено, а сама сила является результатом преобразования в материальных телах одних видов энергии в другие (аналогичные примеры можно наблюдать при силовом действии пружин, упругих тел и т. п.).

Классическая механика установила, что массы тел не исчезают и не возникают из ничего, а физические процессы не могут протекать без сил. Кроме того, протекание физических процессов между телами является объективной реальностью и не зависит от наблюдателя, если он не оказывает силового воздействия на этот процесс. Еще одна особенность классической механики: в ней нет абсолютизации скорости движения тел, она справедлива и может быть использована для любых скоростей движения тел, без ограничения. Однако, Ньютон был деистом: первопричиной (точнее – первотолчком природы) он считал Бога. Потому при чтении ньютоновских трудов встречаются формулировки, которые могут трактоваться различным образом. Например, такая формулировка, как "природа подчиняется математическим законам", требует специального пояснения. Дело в том, что абстрактно-математический аппарат лишь описывает объективные закономерности природы (например, тяготение) и помогает в их познании. Напрямую утверждать, что математические закономерности лежат в основе природы, нельзя. Ибо, по существу, это означает признание первичности идеальных абстракций по отношению к объективной реальности. Поэтому и приходится делать соответствующую поправку, чтобы исключительно важная роль математики все же не абсолютизировалась и не приводила тем самым научное познание к крену, чреватому далеко идущими последствиями. Но полностью избежать "волчьих ям" удается не всегда и не всем. Некоторые современные истолкования тяготения – характерный тому пример.

 

ДВИГАТЕЛЬ ВСЕЛЕННОЙ

В процессе общей работы и дискуссий с В.П. Селезневым удалось найти нетривиальный подход к пониманию природы сил тяготения и той роли, которую они играют во Вселенной. Ниже излагается данная концепция, как она впервые была представлена в нашей совместной и уже цитированной книге "Мироздание постигая: Несколько диалогов между философом и естествоиспытателем о современной научной картине мира" (М., 1989).

В классической механике небесные тела, притягиваясь взаимно с помощью гравитационных полей, движутся под действием сил тяготения и инерции по некоторым орбитам в космическом пространстве, которое отождествляется с пустотой. Однако эта идеальная картина Вселенной не согласуется с реальным состоянием космического пространства. Установлено, что это пространство содержит рассеянные молекулы веществ, атомы, ионы, электроны, фотоны и другие частицы, крупные тела – метеориты и, наконец, – множество различных полей. Плотность распределения этих частиц и полей в пространстве неравномерная, однако при движении больших небесных тел – галактик, звезд и планет – такая "запыленная" среда может оказывать сопротивление. Вследствие этого небесные тела должны постепенно терять свою кинетическую энергию и сближаться под действием сил тяготения. Для Солнечной системы это означало бы, что с течением времени Луна, например, упала бы на Землю, а Земля и другие планеты – на Солнце.

Тем не менее, несмотря на эти условия, небесные тела в течение времени, исчисляемого миллиардами лет, сохраняют параметры своих орбит практически неизменными, а Вселенная в целом существует вечно. Чтобы сохранить подобное почти стационарное состояние Вселенной, необходимо иметь какой-то источник энергии, который позволял бы скомпенсировать расходы энергии, затрачиваемые на сопротивление космической среды. Существует ли он в природе? Этот вопрос является исключительно сложным, но зато – и особенно интересным. По существу, речь идет о том, существует ли некоторый единый механизм – "Двигатель Вселенной", поддерживающий определенное ее состояние.

В первом приближении классическая небесная механика дает на это следующий ответ: Вселенная поддерживается в определенном динамическом равновесии с помощью сил тяготения небесных тел и сил инерции их масс без учета материальности космической среды. Конечно, математическая модель даже такой Вселенной чрезвычайно сложная, но принципиально ее можно описать и даже промоделировать с помощью современных ЭВМ. Однако реальная структура космического пространства создает некоторый эффект торможения движению небесных тел. Небесная механика позволяет исследовать и этот эффект, однако она не дает ответа на вопрос - почему же Вселенная преодолевает торможение движения небесных тел и откуда она находит энергетические ресурсы для восстановления расходуемой энергии? Чтобы выявить подобные энергетические ресурсы, необходимо более детально рассмотреть особенности гравитационного взаимодействия между небесными телами.

Распределенная масса небесных тел приводит к существенному изменению гравитационных взаимодействий между телами. Поскольку каждая материальная частица небесного тела является источником гравитационного поля, результирующее (или суммарное) поле жестко связано с телом и участвует в его вращении вокруг центра масс как одно целое. Это означает, что гравитационное поле не только охватывает значительное пространство вокруг тела, но и вращается вместе с телом, увлекая за собой все другие внешние взаимодействующие материальные объекты. Но вращение гравитационного поля небесного тела само по себе не может служить источником дополнительной энергии. Нужен какой-то дополнительный эффект в небесной механике. И вот здесь-то и требуется сделать еще один шаг в изучении гравитационного поля, основанный на учете влияния относительного движения тел на силу их взаимного притяжения. В статических условиях, когда тела неподвижны относительно друг друга, сила Q0 их взаимного притяжения пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними (закон всемирного тяготения).

Что же произойдет с силой притяжения, если тела будут сближаться или ударяться относительно друг друга с некоторой скоростью V? Поскольку скорость распространения гравитационного поля относительно излучающего тела имеет конечную величину (обозначим С – скорость поля относительно излучающего тела), следовательно, она зависит также и от скоростей относительного движения тел (полагаем, что закон сложения скоростей справедлив для всех материальных объектов, включая и физические поля). Благодаря этому сила Q гравитационного притяжения будет зависеть не только от масс тел и расстояний между ними, но и от величины относительной скорости V. Установлено, что при сближении тел, летящих со скоростью V, сила их взаимного притяжения Q будет несколько меньше, чем ее статическое значение Q0 (Q<Q0), a при удалении эта сила будет больше (Q>Q0). Зависимость силы Q от скорости V может иметь сложный нелинейный характер.

Между тем зависимость силы взаимного тяготения тел от относительной скорости между ними в классической механике не была учтена. Однако влияние относительного движения тел на физические процессы взаимодействия между ними проявляется повсеместно в природе. В частности, при больших скоростях относительного движения, близких к скорости света, происходят релятивистские эффекты, вызванные существенным изменением сил взаимодействия. Какое же новое качество вносится в небесную механику при количественном изменении сил всемирного тяготения, вызванном скоростями относительного движения тел?

Прежде чем делать широкое обобщение о влиянии скоростей относительного движения тел в небесной механике, необходимо рассмотреть пример, позволяющий уяснить существо данной проблемы для земных условий. Предположим, что наблюдатель находится внутри космического корабля, летящего вокруг земли в направлении ее вращения по экваториальной круговой орбите с периодом Т более суток (Т>24 часов). Земное гравитационное поле вращается вместе с Землей и совершает один оборот за сутки, обгоняя космический корабль (рис. 106). Рассматривая движение Земли, наблюдатель обнаружит, что поверхность ее восточного полушария будет удаляться от корабля, а западного – приближаться к нему вследствие вращения Земли вокруг своей оси. Разделим мысленно массу mо Земли на западную и восточную половины полушарий и заменим эти массы на эквивалентные материальные точки (с массами 1/2m0), расположенные в центрах масс полушарий (точки О1 и O2 на расстоянии 1 друг от друга). Если соединить прямыми линиями центры масс земных полушарий и центр массы корабля (точка О с массой m), то образуется равнобедренный треугольник с углом d при вершине (точка О). Сила Q1 гравитационного тяготения западного полушария направлена по линии O1O, а восточного – (Q2) – по линии O2O.

Вследствие суточного вращения Земли с угловой скоростью массы всех частиц восточного полушария будут удаляться от корабля, а западного – приближаться. По этой причине сила тяготения эквивалентной материальной точки восточного полушария (Q2) несколько увеличится, а западного полушария (Q1) – уменьшится. Сумма проекций сил Q1 и Q2 на радиус-вектор, соединяющий центры масс всей Земли и корабля, образуют вектор радиальной силы тяготения Qр. Сумма проекций этих сил на касательную к орбите корабля Qт определяет собой тангенциальную силу. Роль таких сил в динамике движения космического корабля следующая.

Радиальная сила Qр, будучи уравновешенной центробежной силой, создаваемой массой корабля при движении по орбите, обеспечивает определенную величину орбитальной скорости в соответствии с известными ньютоновскими расчетами (скорость обратно пропорциональна корню квадратному из расстояния от центра Земли до корабля). Тангенциальная сила Qт является новым компонентом небесной механики, возникающим при учете угловой скорости вращения распределенных масс небесных тел и относительной скорости их центров масс. Величину этой силы можно определить, зная, что:

w и w1 – угловые скорости Земли (или земного гравитационного поля) и радиус-вектора корабля (линия, соединяющая центры масс корабля и Земли);

Сп – скорость распространения гравитационного поля;

l – расстояние между центрами масс западного и восточного полушарий Земли;

h – расстояние между центрами масс Земли и корабля.

Замечаем, что величина тангенциальной силы зависит от разности угловых скоростей w и w1. Если Земля вращается быстрее (w>w1), то гравитационное поле обгоняет космический корабль и как бы подталкивает его (сила (Qт>0), увеличивая тем самым орбитальную скорость движения. В случае, если угловая скорость Земли меньше w1, сила Qт меняет свое направление на противоположное (Qт<0) и становится тормозящей. При w1 = w, когда период орбитального движения корабля равен земным суткам, тангенциальная сила исчезает (Qт = 0).

В реальных условиях космическое пространство может оказывать некоторое сопротивление движению корабля с силой F, которая зависит от плотности окружающей среды, миделя сечения корабля, коэффициента его аэродинамического сопротивления и, конечно, от орбитальной скорости движения. Продольное движение корабля с орбитальной скоростью Vорб. может быть найдено из уравнения динамики Ньютона, в котором сила инерции корабля уравновешивается разностью сил Qт и F. Если Qт>F, ТО Тангенциальная сила превосходит силу сопротивления и скорость Vорб корабля увеличивается. При этом центробежная сила массы корабля также возрастает, в результате чего корабль переместится на более высокую орбиту (расстояние h увеличится). Поскольку сила Qт пропорциональна h-3, увеличение расстояния h приведет к резкому сокращению силы Qт до тех пор, пока она не уравновесится силой F. В этом случае наступит динамическое равновесие: тормозящий эффект окружающей среды будет полностью устранен, а корабль будет двигаться по новой стационарной орбите.

Если же сила торможения F будет превосходить Qт, то орбитальная скорость уменьшится, корабль начнет перемещаться на более низкую орбиту до тех пор, пока возрастающая сила Qт не уравновесит силы торможения. Таким образом, вращающееся гравитационное поле небесных тел становится своеобразным регулятором параметров небесной механики в условиях, когда окружающая космическая среда может оказывать сопротивление движению тел.

В рассматриваемом примере анализировалась механика движения гипотетического космического корабля. Но какова же судьба реальных спутников Земли – Луны и искусственных спутников, созданных человеком? Условия для движения Луны вокруг Земли самые благоприятные. Если Земля совершает вокруг своей оси один оборот в сутки (точнее – за 23 часа 56 минут 4,1 секунды), то Луна совершает полный оборот вокруг Земли за 27 дней 43 минуты 11 секунд. Это означает, что гравитационное поле Земли более чем в 27 раз быстрее вращается, чем радиус-вектор, соединяющий центры масс этих небесных тел. Следовательно, на Луну непрерывно действует тангенциальная сила Qт, направленная на преодоление сил сопротивления околоземной космической среды. Параметры орбиты Луны, как следует из помещенных выше выводов, поддерживаются стабильными благодаря тому, что движущая сила (Qт) и сила сопротивления среды полностью уравновешены в данное время.

Более разнообразная ситуация возникает у спутников Марса. Один из его спутников – Фобос – вращается вокруг Марса более чем в три раза быстрее, чем сама планета, тем самым обгоняя вращающееся гравитационное поле. Это означает, что гравитационное поле Марса тормозит спутник Фобос и он должен постепенно снижаться, теряя имеющийся запас кинетической энергии. В конце концов такой "падающий" спутник должен войти в плотные слои марсианской атмосферы, частично сгореть и затем разбиться о поверхность планеты. Более счастливая судьба у другого спутника Марса – Деймоса. Его период обращения превышает марсианские сутки, гравитационное поле планеты обгоняет и подталкивает спутник. Следовательно, орбита Деймоса является достаточно стабильной и этот спутник можно отнести к числу долгожителей.

Совершенно другие условия складываются для искусственных спутников Земли. Большая часть таких спутников движется по орбитам с периодом менее суток. Это означает, что такие спутники обгоняют вращающееся гравитационное поле Земли. В этом случае разность угловых скоростей w –w1<0 и тангенциальная сила не ускоряет, а тормозит движение спутников вместе с силами сопротивления окружающей среды. Следовательно, подобные спутники являются "падающими", то есть они постепенно должны уменьшать свою орбитальную скорость и снижаться. Для восстановления первоначальных параметров орбит у таких спутников требуется проводить коррекцию, то есть создавать силу тяги ракетных двигателей для компенсации тормозящего эффекта от суммы сил (Qт + Р).

Из рассмотренного следует, что "гравитационным двигателем" в Солнечной системе является само Солнце. Каковы же условия сохранения параметров движения планет Солнечной системы, учитывая существенную запыленность околосолнечного пространства (влияние солнечного ветра)? Гравитационное поле Солнца является силовой основой динамики движения планет. Угловая скорость вращения (w) этого поля – один оборот за 25 дней 9,1 часа – намного превышает угловую скорость радиус-векторов планет, соединяющих их центры масс с центром массы Солнца. Следовательно, вращающееся гравитационное поле Солнца создает для всех планет ускоряющую тангенциальную силу, помогающую этим планетам преодолевать сопротивление космической среды.

Астрономические наблюдения показывают, что орбиты всех планет Солнечной системы весьма стабильны. Это означает, что в процессе эволюции Солнечной системы каждая планета постепенно перешла на такой режим движения, когда центральная сила тяготения оказалась уравновешенной центробежной силой инерции, а сила сопротивления среды – тангенциальной силой вращающегося гравитационного поля Солнца. При этом надо иметь в виду, что плотность материи, распыленной в пределах Солнечной системы, убывает по мере увеличения расстояния от Солнца. Кроме того, планеты существенно различаются между собой по массе, объему и характеристикам аэродинамического сопротивления, что в совокупности с другими условиями движения и предопределяет большое разнообразие форм и параметров планетных орбит.

В рассмотренной картине мира вращающееся гравитационное поле Солнца является своеобразным двигателем всей Солнечной системы. При этом расходуется кинетическая энергия вращения Солнца на преодоление сопротивления среды движения всех ее планет. Но не получится ли так, что Солнце израсходует всю свою кинетическую энергию вращения и остановится, а планеты, не ускоряемые тангенциальными силами, постепенно упадут на Солнце? Высказанное опасение вполне обоснованное. Однако и в этом вопросе Природа нашла убедительный ответ. Как известно, в межзвездном и околосолнечном пространстве рассеяно значительное количество материи, которое непрерывно пополняется за счет выбрасывания (излучения) потоков вещества и мелких частиц самим Солнцем и звездами (результат ядерных процессов, происходящих внутри этих небесных тел). Радиальная сила тяготения Qр Солнца притягивает большие массы вещества, рассеянного в окружающей среде (рис. 107). Этот поток вещества (пыль, метеориты и т. п.), устремляясь к Солнцу с нарастающей скоростью, сообщает ему значительную кинетическую энергию и пополняет запасы вещества.

В этом процессе "дозаправки" Солнца интересную роль играют тангенциальные силы Qт вращающегося гравитационного поля. Благодаря этим силам падающая на солнечную поверхность космическая материя приобретает тангенциальную составляющую скорости, направленную в сторону вращения Солнца. Следовательно, на Солнце падают потоки материи из космического пространства не радиально, а под некоторым углом к поверхности, создающие дополнительную кинетическую энергию его вращения и тем самым компенсирующую в какой-то мере расходы энергии на движение планет. Конечно, это не "вечный двигатель", но работает он в достаточно устойчивом режиме в течение многих миллиардов лет вполне успешно. Об этом убедительно говорит история существования Солнечной системы.

Есть еще один "трудный" вопрос, связанный с законом всемирного тяготения. По Ньютону, гравитационная сила действует мгновенно и на неограниченное расстояние, то есть с бесконечной скоростью. В начале века пытались наложить ограничение на это принципиальное положение, ссылаясь на теорию относительности, запрещавшую скорости, превышающие скорость света. Как мы уже убедились, подобные "запреты" оказались несостоятельными, от них уже отказываются сами же релятивисты. Но как объяснить дальнодействие гравитационного поля? Прав был Ньютон или в его представления необходимо внести коррективы? Вопросы действительно трудные. Для ответа на них воспользуемся, кроме известных теоретических положений, еще здравым смыслом и логикой. Гравитационное поле обладает удивительным свойством: оно проникает сквозь любое тело или физическую среду, заставляя взаимодействовать одновременно всю массу тела с другим притягивающим телом. Если исходить из принципов, в соответствии с которыми только материальная субстанция, обладающая некоторой массой, может создавать силу взаимодействия, то можно полагать, что и гравитационное поле представляет собой особый вид материи, обладающей распределенной в пространстве массой и, следовательно, способной оказывать силовое действие на другие тела.

Все попытки обнаружить материальный носитель поля, то есть элементарную частицу, создающую гравитационный эффект, окончились неудачей. Измерить скорость распространения гравитационного поля оказалось несравненно сложнее и труднее, чем скорость распространения света. Если источник света можно своевременно включить и измерить время, за которое луч света пройдет определенный путь, то источник гравитации (массу тела) невозможно включить или выключить (тело излучает гравитационное поле непрерывно, и его нельзя заэкранировать), чтобы осуществить измерение скорости распространения поля. Этой особенностью гравитационного поля объясняется и его "дальнодействие". Действительно, поскольку масса тела не исчезает и не возникает вновь, его гравитационное поле все время сохраняется, охватывая огромное пространство. Если другое тело попадает в пределы этого поля, то оно мгновенно (здесь не требуется время для распространения поля, так как оно уже занимает все окружающее пространство) взаимодействует всей своей массой.

Если материя, а вместе с ней и гравитационное поле существуют вечно, а всепроникающая способность этого поля затрудняет измерение его скорости, то возможно ли в принципе решение этой задачи? Говоря о проблеме измерения скорости гравитационного поля, следует исходить из того, что оно, как и всякое физическое поле, имеет конечную скорость распространения относительно своего источника излучения (массы тела) и обладает силовым воздействием на другие тела. Это вселяет надежду на практическую возможность измерения скорости такого поля. Один из способов может быть основан на измерении с помощью гравиметров изменения силы тяжести на поверхности Земли, вызванного движением, например, Луны (приливной эффект), и сопоставления положения этого тела в земной системе координат (скорость гравитационного поля сравнивается со скоростью света, которая известна).

Задача может быть решена и с помощью двух космических летательных аппаратов (КЛА), летящих на одинаковых круговых экваториальных орбитах, но в противоположные стороны. Тангенциальные силы, действующие на КЛА в результате вращения гравитационного поля Земли вместе с ее телом, будут различные по величине и направлению, а силы торможения со стороны космической среды одинаковые. Измеряя характер изменения скорости полета этих КЛА и параметров их орбит вследствие гравитационного торможения (если периоды обращения КЛА будут менее суток), можно вычислить и скорость распространения гравитационного поля.

Аналогичную задачу можно решать и с помощью одного КЛА. Для этого необходимо направлять с помощью излучателей, расположенных на КЛА, один световой (или радио-) луч вперед по полету в сторону приемника, расположенного на Земле, а другой луч – назад, в сторону другого приемника на Земле. Вследствие изменения сил гравитации дополнительные ускорения и скорости, сообщаемые первому и второму лучам, будут различные. Это позволит с помощью измеренного наземными приемниками эффекта Доплера у каждого луча определить и величину скорости гравитационного поля. Конечно, подобные измерения возможно выполнить только аппаратурой, обладающей чрезвычайно высокими техническими качествами (высоким быстродействием, чувствительностью и точностью измерений).

Подводя итоги обсуждения проблем всемирного тяготения, можно прийти к заключению, что космистский подход и учет изменения гравитационной силы позволили выяснить физические процессы взаимодействия небесных тел и объяснить многие загадки Природы. По-видимому, проникновение в тайны гравитации находится еще в начальной стадии. Главная работа еще впереди.

 

ВЕЩЕСТВО, СПРЯТАННОЕ В КОСМОСЕ

Из содержания настоящей книги читателю становится вполне ясно, что во Вселенной нет такого места (даже точки!), где бы отсутствовала материя. Если даже в космическом пространстве не наблюдаются никакие небесные объекты, то из этого вовсе не следует, что там вообще ничего нет. Кажущееся пустым и прозрачным пространство на самом деле сплошь заполнено материей, но только в полевой и вакуумной формах. Прав был по-своему старик Аристотель, сказавший однажды, что природа не терпит пустоты. Сколько ему за сей нечаянно оброненный афоризм досталось! А ведь никакой крамолы, если вдуматься, и нет: природа, действительно, не терпит пустоты в том смысле, что не допукает ее существования.

Но здесь возникает еще одна проблема – так называемой "скрытой массы". Новейшая астрофизика, исходя из автоматизированных моделей Вселенной, рассчитала не только ее конечный объем, но и конечную массу (которая, как считают релятивисты, в свое время возникла из ничего, из нулевой точки). (Между тем элементарная логика подсказывает: бесконечная Вселенная должна иметь бесконечную массу). Тем не менее одна псевдопроблема немедленно породила другую – псевдопроблему.

Суть ее кратко заключается в том, что расчетное количество массы Вселенной не соответствует наблюдательным, измерительным и экспериментальным данным. Из этого был сделан вывод, что подавляющая часть вещества скрыта от наблюдения (согласно релятивистским расчетам, наблюдению доступны лишь до 10 % от всей массы Вселенной). И пошли разного рода гипотезы и гадания, что же из себя представляет "скрытая масса", или невидимое вещество Вселенной. Я поделился своими сомнениями с профессором В.П. Селезневым. И вот какой между нами состоялся разговор.

Профессор. Причиной для "всплесков" идей по поводу "скрытых масс" галактик* явились наблюдения вращательного движения некоторых галактик. Было обнаружено, что внешние рукава галактик (компоненты или части галактик) вращаются вокруг центра галактики быстрее, чем можно было бы ожидать, рассчитывая скорость их вращения на основании законов Ньютона.

Действительно, согласно законам небесной механики, орбитальная скорость частей галактики, удаленных от центра ее массы, должна была бы уменьшаться обратно пропорционально корню квадратному из расстояния от них до центра вращения. Наблюдения же показали, что орбитальные скорости вращения различных частей галактик остаются примерно постоянными, даже при расстояниях, превышающих 30 килопарсек от ядра галактики.

Не находя какого-либо разумного объяснения этой загадки природы, некоторые исследователи пришли к заключению, что большая часть массы такой галактики распределена снаружи ее светящейся части, образуя огромную сферу из темного вещества (рис. 108), внутри которой и находится видимая нами галактика. (При этом не объясняется, как можно увидеть светящуюся галактику, если она окружена большой непрозрачной сферой из темного вещества.)

Автор. На основе такого предположения создаются различные гипотезы и идеи, позволяющие якобы объяснить возникновение "скрытой массы". Некоторые идеи* основаны на том, что "скрытые массы" образовались в результате резкого нарушения симметрии Вселенной за счет чрезвычайно быстрого ее "раздувания" (она будто бы расширилась и выросла более чем на 28 порядков величины за время менее 10-30 секунд!). Не менее "оригинальными" являются идеи, основанные на том, что "скрытые массы" образованы различными видами "экзотических" веществ, в том числе состоящих из нейтрино (частиц с массой порядка 0,0001 массы электрона), или новой очень легкой частицы – аксона (определена из теоретических предпосылок), или из "космических струн", о которых речь уже шла выше (это якобы протяженные "топологические дефекты", возникающие при нарушении симметрии в ранней Вселенной!), и т. п. Как же можно объяснить этот феномен природы, исходя из известных законов природы?

Профессор. Для объяснения подобных чудес Вселенной надо в первую очередь обратиться к классической механике. Как известно, в этой науке при расчете гравитационных взаимодействий небесных тел размерами тела пренебрегают, а всю массу тела заменяют эквивалентной массой материальной точки; взаимодействие между материальными точками определяют по известной ньютоновской формуле всемирного тяготения. Такое допущение оказалось вполне приемлемым для изучения динамики движения планет и спутников Солнечной системы.

Для изучения же динамики движения галактик такое упрощение в расчетах уже недопустимо, так как их массы распределены в пределах огромного пространства. Однако методический подход Ньютона и в этом случае может остаться справедливым, если распределенную массу галактик представить в виде совокупности взаимодействующих точечных масс и к каждой из них применять известный способ расчета сил гравитации. Тогда сила взаимодействия какого-либо небесного тела с галактикойопределяется как результирующий вектор сил гравитационного притяжения этого тела со всеми точечными массами, входящими в состав галактики. Такой способ расчета динамики движения галактик (да и любых систем небесных тел, включая и Солнечную систему) позволяет обнаружить новые их гравитационные свойства и объяснить секрет "скрытых масс".

___________________
* Краус Л.М. Невидимое вещество во Вселенной // В мире науки. 1987. No 2.

 

Автор. Но можно ли хотя бы приближенно оценить особенности распределения сил тяготения в пространстве внутри и вне галактик, без привлечения "скрытых масс"?

Профессор. Конечно, решение такой задачи связано с большими математическими трудностями, так как для этого требуется знать закон распределения масс отдельных небесных тел внутри объема галактики и их расстояния до интересующей нас точки пространства, где располагается наблюдатель. Однако для приближенной оценки можно сделать ряд упрощений. Например, определим центр масс всей галактики (точка О на рис. 109а) и расстояние r от него до небесного тела с массой mо, на котором находится наблюдатель. Затем плоскостью Ф, проходящей по радиус-вектору r, рассечем галактику на равные по массе половины – А и В. В каждой половине галактики определим центры их масс (точки О1 и О2), которые находятся на расстоянии l1 и l2 от центра масс О. Линии O1m0 и O2m0, соединяющие центры масс половинок галактики с небесным телом mо, повернуты относительно радиус-вектора r на углы a1 и a2 соответственно. Вдоль этих линий действует на тело m0 силы тяготения Q1 и Q2 левой и правой частей галактики. Геометрическая сумма векторов Q1 и Q2 этих сил образует результирующую силу тяготения галактики, действующую на тело m0.

Сравним результирующую силу Q с силой Q*, которая получается, если галактику представлять в виде эквивалентной материальной точки в центре масс (точка О, рис. 109б). Величина силы Q* будет, согласно закону Ньютона, пропорциональна произведению масс m и М (масса всей галактики) и обратно пропорциональна квадрату расстояния r между ними. Нетрудно подсчитать, что сила Q будет определяться величиной силы Q*, умноженной на функцию косинуса угла a в кубе.

Такая зависимость означает, что по мере приближения небесного тела m0 к центру галактики сила гравитационного притяжения Q будет уменьшаться (угол a стремится к 900, а функция косинуса этого угла – к нулю). В частном случае, когда тело m0 окажется в центре галактики, результирующая сила тяготения, действующая на это тело, будет равна нулю. Это можно проверить и без каких-либо расчетов: тело то оказывается удаленным на одинаковые расстояния от масс m1, m2 и силы их тяготения Q1 и Q2 уравновешивают друг друга.

Орбитальная скорость движения V тела m0 вокруг галактики также зависит от характера распределения ее масс. Если обозначить V* скорость орбитального движения вокруг галактики, которая моделируется материальной точкой в центре масс О (рис. 109б), то величина орбитальной скорости V при распределенной массе галактики (рис. 109а) будет отличаться от V* на величину функции косинуса угла a в степени 3/2. Это означает, что по мере приближения к центру галактики орбитальная скорость движения тела m0 будет уменьшаться.

При этом небесное тело, оказавшееся посредине между двумя частями массы галактики m1, не воспринимает какой-либо гравитационной силы от небесного тела с точечной массой m0(Q=0) и может неподвижно сохранять свое положение (V=0) в этой точке пространства. По мере удаления небесного тела m0 от центра галактики растет, постепенно возрастает сила тяготения и орбитальная скорость (рис. 110). Такой характер изменения сил тяготения и орбитальной скорости совершенно не сходится с обычным представлением небесной механики для небесных тел с точечными массами.

Pассмотренная модель распределенной галактики, состоящей только из двух точечных масс m1 (i = 1; 2), является простейшей. Для более полного и точного представления о гравитационных свойствах галактик следует взять много материальных точек m1 (где i = 1, 2, 3, ..., n) и рассмотреть их суммарное силовое взаимодействие с точечным небесным телом m0. При этом в общем случае характер изменения гравитационного поля будет аналогичен рассмотренной двухмассовой модели, хотя и будет охватывать все внутреннее и окологалактическое пространство равномерно.

Таким образом, орбитальные скорости небесного тела, которое движется вблизи центра распределенной массы галактики, будут значительно меньше, чем если бы оно двигалось вокруг такой же сосредоточенной массы. Именно этот эффект и был обнаружен при наблюдении реальных галактик в звездном небе. Поэтому данный эффект следует объяснять не существованием в космическом пространстве какой-то "скрытой массы", а как следствие ослабленных сил тяготения галактик из-за того, что их массы рассредоточены в значительных пространственных объемах.

Кстати, заметим, что подобные эффекты можно наблюдать и в земных условиях. Если, например, разместить два тела, каждое с массой m на некотором расстоянии друг от друга (рис. 111), то наблюдатель (или какое-то другое пробное тело), помещенный посередине между этими двумя телами, не будет перемещаться под действием силы тяготения, поскольку она будет уравновешена противоположно направленными силами притяжения Q каждого из тел с массой m. В этих условиях наблюдатель, если он не знает обстановки, может сделать вывод о том, что этих масс вообще не существует. Или, наоборот, если он наблюдает за этими телами, то может сделать вывод, что действие этих видимых масс уравновешивается какими-то "скрытыми" в окружающем пространстве массами.

Автор. Итак, проблема "скрытых масс" в звездном мире может быть объяснена на основе космистского подхода, без привлечения экстравагантных гипотез. По-видимому, подобный подход может уточнить и некоторые "странности", наблюдаемые в земных условиях и в Солнечной системе? В частности, как изменяется гравитационное поле Земли и Солнца, если учитывать их распределенные массы, и как это отражается на движении планет?

Профессор. Рассмотренные выше гравитационные эффекты распределения масс проявляются и у небесных тел Солнечной системы. Возьмем в качестве примера Землю. Прибор П, измеряющий силу тяготения на поверхности Земли (рис. 112), будет показывать величину этой силы меньше, чем в случае сосредоточения всей земной массы в ее центре. Объясняется это тем, что распределенные массы, особенно у верхних слоев Земли в окрестностях расположения прибора, будут создавать силы тяготения Q1 , направленные почти в горизонтальной плоскости и в противоположные стороны (составляющие Qx). Это означает, что некоторая (и весьма значительная) часть (В на рис. 112) массы Земли не проявляет себя в общем гравитационном потенциале. Эквивалентная часть земной массы (А на рис. 112), создающая вертикальную силу тяготения, имеет грушевидную, а не сферическую форму.

Автор. Как будет меняться гравитационное поле Земли, если наблюдатель будет спускаться вплоть до самого ее центра по воображаемому "колодцу"?

Профессор. Для изучения этого вопроса осуществим вместе с читателем следующий мысленный эксперимент. Предположим, что в толще Земли сделан колодец глубиной до самого ее центра. При спуске в такой колодец наблюдателя с прибором, измеряющим силу тяготения Земли, обнаружим следующее: сила тяготения будет уменьшаться, а в центре Земли полностью исчезнет (рис. 113). Это объясняется тем, что по мере спуска внутрь Земли часть земной массы, расположенной выше горизонтальной плоскости O1x, проходящей через центр масс чувствительного элемента прибора, будет создавать силу тяготения Qy*, направленную вверх, и тем самым уменьшать результирующую силу Qy тяготения.

Поскольку верхняя часть 1 земной массы создает силу тяготения не вниз, а вверх, симметричная ей часть 2 массы Земли тем самым как бы исключается из тяготения. В результате этого гравитационное воздействие на прибор оказывает только остаточная часть земной массы (3 на риc. 113а). Чем глубже опускается прибор, тем меньше остается доля активной (нескомпенсированной) гравитационной массы Земли (рис. 113б). И наконец, в центре Земли силы тяготения ее масс, расположенных во все стороны симметрично, будут полностью скомпенсированы. Если представить некоторый свободный объем (лабораторию) шаровой формы в центре Земли, то помещенный в нее наблюдатель окажется в условиях невесомости. При всяком смещении центра масс наблюдателя относительно центра масс Земли он будет возвращаться к центру с некоторым ускорением, вызванным действием весьма малой силы тяготения. (В центре Земли будет состояние устойчивого равновесия.)

Автор. Можно ли форму этой удивительной гравитационной "груши" представить в аналитическом виде?

Профессор. Безусловно, можно (см. рис. 114). Уравнение формы этой "груши" можно получить в результате интегрирования всех элементарных сил тяготения, созданных материальными частицами шара 2 по всему объему. Если рассечь объем шара плоскостью Оxy, проходящей через его центр О и центр масс наблюдателя (точка В), находящегося на расстоянии R от центра шара, то любая произвольная точка Аy на линии, образованной пересечением поверхности "груши" с плоскостью Dxy, будет определяться координатами х и y, значения которых приведены на рисунке 114.

Автор. Для практических целей, особенно для космонавтики, очень важно знать закономерности распределения поля тяготения у поверхности Земли и в околоземном космическом пространстве. Какие особенности в это распределение вносит учет распределенности массы Земли?

Профессор. Если наблюдатель будет измерять гравитационную силу в пространстве над поверхностью Земли, то он обнаружит следующие эффекты. По мере увеличения высоты влияние сил тяготения распределенных масс (в первую очередь боковых) убывает, и наконец на значительном расстоянии (несколько радиусов Земли) Землю можно рассматривать уже как точечную массу (см. рис. 115). В частности, при изучении параметров орбитального движения Луны относительно Земли гравитационная модель взаимодействия точечных масс небесных тел полностью "срабатывает". Однако при наблюдении орбит низколетящих искусственных спутников Земли (высота 200–500 км) обнаруживаются некоторые особенности (появляется дополнительная прецессия перигея орбиты и др.), которые обусловлены рассмотренным выше влиянием изменения гравитационного земного поля. Изучая орбитальное движение планет вокруг Солнца, следует учитывать влияние распределенности солнечной массы на силу гравитационного взаимодействия с планетами, расположенными вблизи Солнца. В частности, уменьшение силы тяготения в окрестностях Солнца в первую очередь сказывается на орбитальном движении Меркурия и Венеры. Можно полагать, что именно по этой причине перигелий (ближайшая к Солнцу точка эллиптической орбиты планеты) Меркурия поворачивается с угловой скоростью около 43 угловых секунд за столетие. Аналогичные эффекты наблюдаются и при движении спутников других планет Солнечной системы, если их орбиты расположены на небольшой высоте (доли или единицы радиусов планет). Из рассмотренного следует, что классическая механика далеко не исчерпала своих возможностей, и она может объяснить много загадочных явлений звездного мира без привлечения каких-либо "архиреволюционных" гипотез.

 

ТАЙНЫ СВЕТА И ТЬМЫ

Космос – неисчерпаемый источник света, энергии, движения, чудесных превращений, круговорота жизни и смерти. Есть, однако, еще немало древних тайн, которые в последнее время почему-то стали выпадать из поля зрения и круга интереса исследователей. Современная физика и базирующаяся на ней космология ввели в научный оборот множество новых понятий без установления какого бы то ни было точного соответствия их объективной действительности. Таковы, к примеру, понятия уже проанализированных кривизны, сингулярности, суперструн и т.п. Зато достаточно простые и имеющие всеобщую значимость явления, с которыми человек сталкивается повседневно на протяжении всей жизни и исторического развития, совершенно игнорируются и не объясняются. Таковы свет, тьма и огонь (пламя), о которых наука прошлого и настоящего ничего вразумительного до сих пор не сказала.

Ответ на вопрос: что такое огонь (или тьма), невозможно отыскать ни в учебниках, ни в справочниках, ни в энциклопедиях (за исключением толковых или мифологических словарей, где дается либо объяснение терминов, либо сведения о донаучных верованиях и представлениях). В Большой советской энциклопедии (3-е издание) статья "Огонь" поражает отсутствием каких-либо разъяснений, что же такое огонь с точки зрения естествознания (вместо этого говорится об использовании огня в человеческой практике со времен неандертальцев). Химия и физика дают нам описание процессов, происходящих при горении, ядерных и термоядерных реакциях, но описание это является узким и не раскрывает сущности огня (пламени) и его космической природы. Фактически в познании огня современный человек не ушел намного дальше своих первобытных предков; разница лишь в том, что донаучное познание описывало огонь в поэтическо-мифологизированной форме, а современная наука – с помощью сухих и далеко не полных формул, также являющихся плодом творческого воображения.

Таинство и непредсказуемость огненной стихии лучше всего демонстрирует ежегодное снисхождение Благодатного Огня накануне Святой Пасхи в Храме Гроба Господня в Иерусалиме. В присутствии тысяч молящихся (и, безусловно, не без помощи их энергетическо-волевого воздействия) на священном камне, где некогда перед воскресением покоилось снятое с креста тело Спасителя, вспыхивает нерукотворный Огонь, который с помощью двух пучков свечей патриарх Иерусалимский передает всем собравшимся верующим. Понятно, что здесь имеет место религиозное таинство, то есть тот самый случай, когда человеку не дано и категорически не рекомендуется осмысливать физическую сущность наблюдаемого явления и рационально объяснять его природу. Но факт налицо: огонь выступает посредником между ожидающими чуда людьми и тем неведомым и недосягаемым для обыденного сознания миром, проникнуть в который науке до сих пор не удавалось.

Скорее всего, механизм взаимосвязи между Макрокосмом и Микрокосмом, а также в структуре самого Микрокосма запрограммирован в законах природы с самого начала и является своего рода ее самоохранительным началом. Человеку изначально раз и навсегда не дано переступать некоторую запретную границу, он обречен представлять (познавать) глубинные законы материи и Космоса только посредством разного рода символов, включая и мысленные абстракции. Выход за этот символический барьер возможен, но только с помощью теоретического воображения, а оно само по себе также представляет лишь оперирование символами. Воображение питает и фольклорные образы, а также символы-мифологемы.

И античный мудрец, и ведийский жрец, и славянский волхв, и современный жрец от науки говорят примерно об одном и том же, пытаясь описать одну и ту же объективную реальность, но используя при этом различные системы символов и построенных на их основе языков. Здесь, кстати, лишний раз подтверждается известный тезис А.Ф. Лосева, сформулированный в его классическом труде "Диалектика мифа": всякая наука сопровождается и питается мифологией, черпая из нее свои исходные интуиции*. С точки зрения единых закономерностей выражения и постижения действительности через символы, современная наука столь же мифологична, сколь научна всякая мифология.

Современные естественно-математические науки, включающие космологию и ее ответвления, ничто без упорядоченных математических символов. Посредством этих символов создается научная картина мира, с их помощью она и прочитывается. Убрать символы – и останется одна пустота, ничто. Тайна космического мышления не в последнюю очередь заключена в символах. Познай их – и ты познаешь все. Приятно это кому бы то ни было или неприятно, но следует набраться мужества и признать: человек, познавая действительность, практически никогда не имеет дел непосредственно с этой действительностью, но лишь с набором некоторых символов и кодов, включая собственные ощущения, более чем опосредованно данную действительность отражающие. И безразлично, в какой именно форме искажается объективная действительность, представляя в мозгу то в виде мифологических картин и сцен, то в виде поэтических или фантастических образов, то в виде метафизических схем, то в виде математических формул.

Судя по всему, именно Огонь является связующей стихией между Микрокосмом и Макрокосмом, между Человеком и энерго-информационным полем Вселенной. Так считал еще Гераклит, опиравшийся, впрочем, в своих воззрениях на древнейшую, общую для индоевропейцев традицию. "Единым логосом огонь устроил все в теле согласно своей собственной природе: (он сделал тело человека) подобием Вселенной, малое (Микрокосм) соответственно большому (Макрокосму) и большое соответственно малому" (подражание Гераклиту у Гиппократа: Досократики, в пер. А. Маковельского, I, 173). Этот фрагмент приводит С.Н. Булгаков с тем, чтобы дать свое истолкование единства Макро- и Микрокосма, увязав его с концепцией Всеединства: "Человек в своей причастности Человеку небесному объемлет в себе все в положительном всеединстве. Он есть организованное все или всеорганизм. "И как в росинке чуть заметной // Весь солнца лик ты узнаешь, // Так слитно в глубине заветной // Все мирозданье ты найдешь" [стихи А. Фета. – В.Д.]. Он есть логос Вселенной, в котором она себя сознает... Как метафизический центр мироздания, как все-организм, человек в каком-то смысле есть это все, ему подвластное, имеет это все, знает это все"*.

Применительно к бесконечной Вселенной в ее неразрывном единстве с космическим кораблем – планетой Земля – и его фатально обреченной корабельной командой – человечеством – натурфилософский аспект вселенскости огня и огненной стихии прозорливо и вдохновенно раскрыл Тютчев в одном из шедевров своей философской лирики:

Как океан объемлет шар земной,
Земная жизнь кругом объята снами;
Настанет ночь – и звучными волнами
Стихия бьет о берег свой. <...>
Небесный свод, горящий славой звездной,
Таинственно глядит из глубины,–
И мы плывем, пылающею бездной
Со всех сторон окружены.

_______________________
* Булгаков С.Н. Свет невечерний: Созерцания и умозрения. М., 1994. С. 248–249.

 

Непреодолимую методологическую трудность обнаруживает и проблема тьмы. Ночное небо, издавна поражающее и вдохновляющее людей своим звездным dеликолепием, в большей своей пространственной части представляет собой тьму, а не свет. По древней натурфилософской традиции – индийской, китайской, византийской (Иоанн Дамаскин), тьма считалась самостоятельной субстанцией (а не отсутствием света, как принято объяснять в современной учебной и справочной литературе). Древние эллины также считали тьму первичным началом: по Гесиоду, все многообразие мира произошло от соития Ночи и Мрака, которым, однако, предшествовал Хаос; по Гигину, напротив, Тьма (Мгла) сначала самостоятельно произвела на свет Хаос, а лишь затем, разделив с ним брачное ложе, произвела на свет весь видимый и невидимый мир*. Античные философы – и, в частности, неоплатоник Прокл в комментариях к платоновскому "Тимею" – обосновали существование "непроницаемой тьмы" как последнего глубинного основания Природы. Тьма, с данной точки зрения, – "огромная бездна, беспредельная по всем направлениям", "последняя бесконечность", объемлющая весь мир. Она – "местопребывание первосуществ, в котором нет ни границ, ни дна, ни опоры"**.

Обстоятельно философская концепция тьмы разработана в "Ареопагитиках", написанных под значительным влиянием неоплатонизма. Входящий в корпус Псевдо-Дионисия Ареопагита трактат "Мистическое богословие" начинается с главы "О сущности таинственного мрака", в которой говорится об излучении тьмы и ее сверхъестественных лучах. Неизвестный автор так формулирует задачу теоретического осмысления проблемы (которая, добавим от себя, до сих пор не получила внятного физического истолкования): "Этот мрак светит в самой мрачной тьме, превосходя всякую ясность, и, оставаясь во всяческой непроницаемости и незримости, преисполняет прекраснейшим блеском умы, плененные очами"***. Да и более близкие к нам по времени мыслители настаивали примерно на таком же подходе. Достаточно неожиданным, к примеру, представляется в гегелевской "Философии природы" утверждение, что тьма обладает самостоятельным, отличным от света существованием, а материя есть по существу то же, что и тьма*. Теоретическая физика и космология на новых витках своего развития возвращаются к этой старой философской концепции.

Известно и представление, не просто выводящее огонь из тьмы, но и полагающее, что сама тьма является огнем, хотя и "черным": "Тьма" – это черный огонь, сильный цветом. Есть красный огонь, сильный видимостью, желтый огонь, сильный формой, и белый огонь, цвет которого заключает в себе все. "Тьма" же – наисильнейший из всех видов огня, и именно он обуял "тоху" [ "хаос". – В.Д.]. "Тьма" – это огонь, но огонь не есть тьма, кроме того случая, когда он охватывает "тоху"**. [Кстати, образ "черного огня" использовал Василий Розанов для названия одной из своих последних книг. – В.Д.]. Точно так же и в "Ареопагитиках" используется понятие "сияющей тьмы".

Современные представления единства Макро- и Микрокосма во многом опираются на торсионную теорию Мироздания, предполагающую непрерывное накопление информации во Вселенной, ее мгновенное распространение и возможность считывания разумным существом в любой точке Космоса. Торсионные (скрученные) поля связывают воедино все уровни природной иерархии и позволяют естественным образом объяснить многие доселе непостижимые явления. Согласно торсионной теории, Вселенная как "Супер-ЭВМ" образует с человеческим мозгом своеобразный биокомпьютер, работающий в соответствии с торсионными законами***, то есть, говоря без затей, по принципам скрученной спирали. Неспроста, видно, философы-диалектики всех времен в один голос утверждали: природа, история, род людской и отдельные индивидуумы развиваются по спирали.

По законам голографии, любая материальная микроскопическая структура содержит и позволяет воспроизвести информацию обо всем Мире. Возникает вопрос - как голографическо-торсионная модель Вселенной сопрягается с выводом о субстанциональном характере тьмы. Приведем наглядный пример: в телескоп наблюдатель видит не только множество удаленных галактик, но и тьму в их окрестностях. Спрашивается: с какой скоростью достигает Земли информация об окологалактической тьме? С той же конечной скоростью, что и галактический свет? Или со своей особой скоростью, быть может, превышающей световую? А может, мгновенно, и мы видим тьму, на каком бы расстоянии от наблюдателя она ни находилась, в тот самый момент, когда устремляем на нее взор. (Даже констатация факта несовпадения между скоростями распространения света и тьмы приводит к серьезным коррективам – если не пересмотру – многих фундаментальных физических представлений.)

Этот вопрос мне как-то довелось задать главному теоретику и разработчику торсионно-вакуумной модели Космоса Г.И. Шипову*, предложив использовать в качестве методологической основы для поиска оптимального решения философские принципы русского космизма. В личной беседе Г.И. Шипов согласился истолковать соответствующим образом полученные им математические выводы. В частности, было признано целесообразным интерпретировать субстанциональность торсионных полей, имеющих мгновенную скорость перемещения, с космической тьмой как носителем таких голографически насыщенных полей. Одновременно признано перспективным и увязывание самого физического вакуума – источника и носителя торсионных полей ("Абсолютного Ничто, которое есть Абсолютное Все", по афористической терминологии Г.И. Шипова) – с космической тьмой как самостоятельной объективной субстанцией.

Представляется также, что при дальнейшем познании и объяснении названных выше и других не до конца познанных природных явлений необходимо учитывать закономерности целостности. Все части Космоса взаимодействуют с Целым и через это Целое взаимодействуют между собой: каждая несет информацию, которая посредством своих носителей распространяется повсюду. Наподобие улья: закономерности поведения отдельных пчел обусловлены законами, присущими всей массе пчел, то есть законами улья. Изучая поведение отдельных пчел, мы узнаем очень и очень многое, но не узнаем главного – законов улья, которые вовсе не складываются механически из закономерностей поведения индивидов. То же можно сказать о современной физике и космологии: они изучают отдельные частицы, волны, поля, но в их инструментарии почти нет методов, способов и математического аппарата для описания целого. Да и задача такая практически не ставится (за исключением разве что теории множеств).

________________
* См.: Шипов Г.И. Теория физического вакуума: Новая парадигма. М., 1993. С. 362.

 

Применительно к человеку такая целостность в общем уже определена. Это – космическая среда во всем ее многообразии и неисчерпаемости. Последовательное применение методологии космизма позволяет более четко и всесторонне постичь саму проблему. Так в пределах земного шара – микроскопической песчинки в масштабах Вселенной – целостностью, о которой упомянуто выше и в границах которой осуществляется вся многогранная деятельность живых индивидов, выступает биосфера (ее теорию с наибольшей полнотой разработал В.И. Вернадский). Биосфера и есть тот энергетический котел в пределах Земли и окружающих ее полей, общий для всего живого, из которого осуществляется подпитка и накачка всех жизненных систем и отдельных их элементов – растений, животных, людей, находящихся в рамках биосферы в неразрывном единстве. Человек неотделим от природы во всем ее многообразии. Он не может существовать без света, воздуха и воды, без растений и животных, дающих ему пищу. Все названное и образует энергетическую основу жизни. Но этим не ограничивается жизнесфера людей. Связанная с невидимыми космическими силами (гравитация, антигравитация, фотонное и противофотонное поле – тьма), она простирается в бескрайние просторы Вселенной. В границах ноосферы и техносферы (второй искусственной природы) громадное значение приобретает информационное поле, создаваемое устной и письменной речью, печатью, радио, телевидением, разного рода компьютерами, произведениями искусства и сопряженное множеством выявленных и невыявленных каналов с неисчерпаемым энергополем Большого и Малого Космоса. Наконец, глубинные неизведанные пока силы обеспечивают мышление, генетическую преемственность поколений, прием и передачу всех видов информации в пределах целостных материальных систем, а в конечном счете – внутри информационного "банка" Вселенной.

Прибежище тьмы, однако, вовсе не одно лишь космическое далеко или покров ночи. Это просто иллюзия ясного солнечного дня, что весь мир вокруг нас наполнен светом или что человек – исключительно "дитя света". Уже под ногами, в недрах Земли безраздельно царит абсолютная тьма. Да и внутри человеческого тела отнюдь не царство света, а в основном доминирует тьма. А сон? Он ведь тоже – царство тьмы, хотя и нарушаемое картинами сновидений. Почти треть жизни нормального человека проходит во сне, представляющем собой естественное и неотъемлемое состояние жизненных процессов.

Еще один поразительный факт: свободное космическое пространство наполнено бесчисленными летящими отовсюду и во все стороны фотонами; их мириады пронизывают ежемгновенно любой и каждый уголок Вселенной. Но в Космосе от этого не делается светлей. Сами по себе фотоны невидимы и не светятся. Свет возникает при их взаимодействии с вещественной средой, например, при попадании на сетчатку глаза. Так что же тогда первично – свет или тьма, если последняя есть всегда, а фотоны возникают только при определенных условиях? Вот и получается, что тьма более фундаментальная физическая субстанция, не сводимая к пустому пространству, лишенному света. Тьма – особая форма движения материи, ее исконно-первичное состояние. Она – носитель, а в ряде случаев и источник света. Она же (но во взаимодействии со светом) – аккумулятор информационного поля Вселенной. Сначала и всегда была Тьма и потом только появился Свет – о том и Библия говорит.

И все же человек всегда стремится к свету, радуется ему, прославляет его, даже обоготворяет в виде светил – Солнца, Луны и звезд. Без света немыслимо ничто живое – ни растения, ни животные. Но вот парадокс – о свете, его подлинной природе и истинных закономерностях человечество до сих пор знает столь же мало, как и о тьме. Среди ученых даже сложился афоризм: "Самое темное в науке – это свет!". Конечно, геометрическая оптика, электромагнитная и квантовая теория многое приоткрыли в тайнах природы. Однако хорошо известно: чем больше мы узнаем и вырастает объем нашего знания, тем больше у этого массива точек соприкосновения с неисчерпаемым океаном незнания. Следовательно, тем больше возникает все новых и новых проблем.

Современная фотонная теория опирается на сложнейший математический аппарат, в ней почти отсутствуют наглядные представления. Более проста и понятна активно разрабатываемая в последние годы тороидальная модель фотона (В.П. Селезнев и др.), вполне сопрягаемая с торсионной теорией вакуума. Согласно тороидальной модели, фотон представляет собой объемное кольцо в виде тора ("баранки"), обладающее переменной скоростью, что дает возможность объяснить все известные световые явления, предложить новые высокоэффективные технологии и преодолеть многие противоречия и тупики, возникшие на пути развития современной физики, астрономии и космологии*. Но и это всего лишь шаг для прорыва познания к подлинному пониманию фундаментальной роли света в эволюции Универсума и Социума. Ориентирами же для дальнейшего продвижения вперед могут служить идеи, сформулированные еще в начале нынешнего века выдающимся русским физиком Н.И. Умовым и великим первооткрывателем космической эры К.Э. Циолковским.

Умов последовательно придерживался энергетическо-информационного подхода в постижении Вселенной

как "вечного настоящего"; его математическое обоснование взаимодействия массы и энергии на три десятилетия опередило соответствующие формулы и выводы теории относительности. Энергетизм распространялся Умовым и на человека – "сына неба [Космоса] и светозарного эфира", порожденного "океаном лучистой энергии"**. Циолковский пошел еще дальше: он не только провозгласил космическо-световое бытие человечества основой его существования и развития, но и рисовал грандиозные картины лучисто-энергетического будущего цивилизации. В разработанной Теории Космических Эр основоположник отечественной и мировой космонавтики предсказал четыре основных стадии информационно-энергетического развития Вселенной и Человечества: 1. Эра рождения; 2. Эра становления; 3. Эра расцвета; 4. Эра терминальная. Каждая из эр должна продолжиться, по Циолковскому, от нескольких до сотен миллиардов лет. На конечной же стадии эволюции Вселенной вещество превратится в свет, и человечество перейдет "в лучистую форму высокого уровня", станет бессмертным во времени и бесконечным в пространстве. Так возникнет "лучистое человечество"***. Другими словами, человек выработает и обретет способность растворяться в энерго-информационном поле, черпая и обращая в свою пользу его неисчерпаемый потенциал. Микрокосм становится Макрокосмом!

_____________________
* См.: Демин В.Н., Селезнев В.П. К звездам быстрее света: Русский космизм вчера, сегодня, завтра. М., 1993.
** Умов Н.И. Собрание сочинений. М., 1916. Т. 3. С. 414, 495, 517.
*** См.: Чижевский А.Л. Теория Космических Эр // Циолковский К.Э. Грезы о Земле и Небе. Тула, 1986. С. 424–427.

 

МНОГОЛИКИЙ ФОТОН

В понимании современной науки фотон – частичка света, которая обладает одновременно и волновыми, и корпускулярными свойствами. Популярно объяснить это никто не берется. Предпочитают обычно ограничиться математическим описанием. Между тем существует вполне доступное даже непосвященным наглядное представление о фотоне. Предоставим вновь слово специалисту в области космических проблем профессору В.П. Селезневу. В данном случае он развивает соответственную тороидальную модель фотона.

Попробуем предоставить, - говорит он, - возможный облик фотона или его упрощенную модель, отвергая тем самым сложившееся убеждение о том, что это частица – "элементарная". Начнем с корпускулярных свойств фотона. Всякая корпускула (микроскопическое тело) должна обладать массой, количеством движения или импульсом, проявляемом в относительном движении. Поток корпускул, падая с какой-то скоростью на поверхность тела, производит механическое давление. Опыты со светом показали, что поток света оказывает давление на поверхность тела (например, зеркала) по тем же закономерностям, что и обычный корпускулярный поток. Это означает, что фотон, как и обычная корпускула, обладает массой, не зависящей от скорости ее движения. Корпускулярные свойства света подтверждаются также фотоэффектом.

Но как же корпускулы проявляют свои волновые свойства? Чтобы ответить на этот вопрос, проанализируем движение различных вращающихся тел и остановимся на движении колеса (рис. 116). Пусть оно катится по горизонтальной поверхности с некоторой скоростью. Отметим, что при встрече с препятствием колесо окажет на него силовое давление (удар) как корпускула. Теперь обратим внимание на движение частиц обода колеса при его равномерном движении, каждая частица совершает одновременно два движения – вперед (поступательное со скоростью С вместе с осью колеса) и вращательное (с угловой скоростью w вокруг оси вращения). Таким образом, траектория движения любой частицы обода представляет собой волнообразную кривую (циклоиду). Следовательно, корпускулярно-волновую природу фотона допустимо объяснить как результат движения корпускулы, летящей со скоростью света и одновременно вращающейся вокруг своего центра масс.

Для разъяснения данного вопроса обратимся к математике. Допустим, фотон обладает множеством физических свойств, тогда каждый независимый по своему содержанию физический опыт может раскрыть какую-то одну (в редких случаях две или более) особенность или свойство фотона. Для того, чтобы получить необходимое количество свойств фотона (например, n), требуется иметь такое же количество независимых уравнений, полученных в результате проведения соответствующего количества разных опытов. Решая совместно это уравнение, можем получить n искомых физических свойств фотона, характеризующих более полную картину его природы.

В том случае, когда количество опытов, а следовательно, и уравнений, меньше числа искомых характеристик изучаемого объекта (информационная недостаточность), решить задачу становится невозможно. Иногда недостающие уравнения восполняют гипотезами, то есть уравнениями, основанными не на опыте, а на догадке или предположении. В этом случае при совместном решении уравнений (вытекающих из опыта, а также гипотетических) получаются искомые данные, в которых содержатся элементы принятых гипотез. Сказанное означает, что при использовании ошибочных гипотез все результаты решения задачи также будут ошибочными. Попробуем последовательно углубиться в изучение природы фотона, привлекая один за другим только известные экспериментальные результаты.

Установлено, что энергия фотона описывается формулой E = mc2. Если бы фотон, как корпускула, двигался поступательно и с постоянной скоростью, то его энергия была равна E1 = 1/2 mc2. Почему же действительная энергия фотона в два раза больше по сравнению с энергией поступательно движущейся корпускулы такой же массы? Ответ на этот вопрос можно найти, если представить форму фотона в виде тороида (аналогично круглой баранке), вся масса m которого расположена на периферии. При вращении такого фотона вокруг оси, перпендикулярной плоскости симметрии тороида, с окружной скоростью равной C = wr, где w – угловая скорость и r – радиус фотона, у него появится энергия вращательного движения равная E = 1/2 Jw2 ( J – момент инерции), учитывая значение J = mr2 для тороида и величину w = c/r, получим E2 = 1/2 mc2. Следовательно, полная энергия фотона будет равняться сумме энергий поступательного E1 и вращательного E2 движений, то есть mc2, что и подтверждает справедливость предположения о тороидальной форме фотона. Следовательно, фотон можно представить в виде быстро вращающегося тороида с окружной скоростью равной С, центр масс которого (точка О на рис. 117) летит относительно излучателя со скоростью света – с. При этом фотон приобретает гидроскопические свойства, вектор его угловой скорости вращения перемещается параллельно самому себе, не поворачиваясь относительно инерциального пространства. Отметим, что плоскость, в которой движутся материальные компоненты фотона, как раз и является плоскостью поляризации света. Свойства поляризации света наблюдаются в природе при прохождении световых лучей в земной атмосфере, а также в оптических экспериментах (при пропускании света через прозрачные вещества, поляризующие его).

Рассмотренная модель фотона позволяет определить и физическую сущность постоянной Планка (h). Сопоставляя формулу для определений энергий mc2 = nh, где n – частота света, приходим к заключению, что постоянная Планка является кинетическим моментом фотона. Величина кинетического момента определяется массой фотона, длиной его радиуса (расстояние от центра вращения до центра масс сечения тороида) и угловой скоростью вращения тороида и не зависит от скорости относительного движения фотона. Все это дает основание принимать кинетический момент фотона за постоянную величину, соответствующую постоянной Планка.

Интересно, что же происходит с фотонами во время известных опытов с аннигиляцией элементарных частиц. Экспериментально установлено, что при аннигиляции электрона и позитрона возникает фотон, и, наоборот, при определенных условиях взаимодействия фотон распадается на электрон и позитрон. Вообще-то термин "аннигиляция" (означающий "уничтожение") применен в физике не вполне удачно. В действительности никакого уничтожения массы и энергии в этих превращениях не происходит, и закон сохранения массы – энергии выполняется совершенно строго.

Сам факт возможного разложения фотона на микрочастицы с положительными и отрицательными зарядами дает возможность более детально представить его модель в виде сложного материального образования кольцевой формы. Кольцо фотона не сплошное, а составлено из отдельных микрочастиц, заряженных поочередно положительными и отрицательными зарядами. Для наглядности такую модель можно представить в виде кругового хоровода (рис. 118), в котором мужчины Мi (условно – отрицательно заряженные микрочастицы) чередуются с женщинами Жi (положительно заряженные микрочастицы). Удерживая друг друга за руки (имитация сил притяжения положительно и отрицательно заряженных микрочастиц), участники хоровода сохраняют его целостность, несмотря на действие центробежных сил инерции, стремящихся разорвать кольцо хоровода.

В отличие от известной модели атома Резерфорда–Бора, в которой содержится ядро, а вокруг него вращаются по орбитам электроны (силы взаимодействия направлены радиально), предлагаемая здесь модель фотона не содержит ядра. Все положительные и отрицательные микрочастицы движутся по одной и той же круговой орбите, а силы взаимодействия Qi (i=1, 2, ... n) между ними направлены по хордам, соединяющим центры масс микрочастиц. Для существования такого "хоровода" необходимо, чтобы число положительно и отрицательно заряженных частиц было одинаковым. Следовательно, суммарный заряд в такой модели фотона должен быть равен нулю. Известно, что реальные фотоны электрически нейтральны. Следовательно, модель по данному признаку совпадает с реальностью.

Зная размеры фотона (длина волны) и его массу (из опыта с давлением света), можно из уравнения его динамики движения, учитывающего равенство сил взаимодействия между электрическими зарядами и силами инерции масс микрочастиц, найти общее число микрочастиц и их массу (масса фотона равна сумме масс микрочастиц). Рассматривая подобную кольцеобразную модель фотона, можно заключить, что чем меньше диаметр этого кольца, тем короче длина волны света. Однако не возникает ли здесь противоречия: ведь известно, чем меньше l и больше частота n, тем значительнее энергия фотона.

Насколько удовлетворяет этим требованиям рассматриваемая модель фотона? Подобное сомнение вполне закономерно. Чтобы разрешить его, необходимо рассмотреть динамику движения микрочастицы фотонного кольца, обозначим ее массу mi (i = 1, 2, ... N, N – число микрочастиц в фотоне). Если фотонное кольцо вращается с угловой скоростью w = c/r,r – радиус фотонного кольца, то центробежная сила инерции каждой микрочастицы F = miw2r уравновешивается силами кулоновского притяжения двух соседних микрочастиц (справа и слева от mi). P = 2Qsina, где Q= kЧq2/l2; l = ar – расстояние между центрами микрочастиц, a = 2p/N – центральный угол между соседними микрочастицами, q – электрический заряд каждой микрочастицы. Приравнивая силы F=Р, после элементарных преобразований получим величину энергии модели фотона:

E=mc2= AN2 AN2 w

r c2

где А = kЧq2/p – постоянная величина.

Из приведенных формул следует, что при сохранении неизменным количества микрочастиц в фотоне N его энергия возрастает при уменьшении радиуса фотонного кольца r и, соответственно, увеличении частоты его вращения w = c/r. При этом расстояния (1) между микрочастицами уменьшаются, а силы притяжения Q возрастают. Таким образом, чтобы эти возросшие силы притяжения уравновесить центробежными силами, фотон должен вращаться с большей угловой скоростью.

Следовательно, рассматриваемая модель фотона удовлетворяет не только здравому смыслу, но и энергетическим формулам Эйнштейна и Планка. На этом, по-видимому, исчерпываются возможности более детального представления модели фотона, основанного на системном подходе и учете данных известных на сегодня физических опытов со светом. Системный подход позволяет изучить свойства любых других "элементарных" частиц до такого уровня детализации, который обусловлен количеством накопленной экспериментальной информации.

Вполне естественно возникает вопрос: как можно представить процесс излучения фотона, обладающего рассмотренной выше структурой? Далее проанализируем особенности предлагаемой модели фотона при различных ситуациях его существования. Сопоставляя размеры элементарных частиц – электрона, протона или атома – с тороидальным фотоном, замечаем, что фотон по своим размерам намного превосходит эти частицы, а его масса, наоборот, на несколько порядков меньше каждой из масс этих частиц. Это дает основание полагать, что фотон, притягиваясь к какой-либо частице охватывает ее своим кольцом-тороидом.

Можно представить себе такую модель строения элементарных частиц вещества: вокруг каждой из них вращаются кольцеобразные фотоны Фi (i = 1, 2, ... к) наподобие колец Сатурна (рис. 119). Чем короче световая волна, тем меньше диаметр di фотонного кольца и расстояние его от поверхности частицы, тем сильнее взаимодействие между ними. Если частица будет тормозиться или колебаться вследствие удара или изменения температуры тела, то при определенных условиях силы инерции массы фотона преодолеют силу его взаимодействия с частицей, вследствие чего произойдет срыв фотонного кольца с этой частицы, то есть излучение кванта света. По мере возрастания ускорений движения частицы (например, при повышении температуры тела) от нее будут отделяться фотоны все меньшего и меньшего диаметра, обладающие большими силами взаимодействия с частицей. Подобный процесс наблюдается на практике: чем выше температура тела, тем более коротковолновый спектр света им излучается. Излученный фотон движется в вакууме равномерно и прямолинейно со скоростью света относительно излучателя. Если на своем пути он не встречает другие тела, не отражается и не поглощается ими, то он летит в пространстве, будучи невидим каким-либо наблюдателем. Увидеть такой фотон можно в том случае, если он непосредственно попадает в глаз. Вследствие невидимости фотонов, свободно летящих в космическом пространстве, наблюдателю, находящемуся в космическом летательном аппарате (КЛА) на большой высоте (в стратосфере и выше), межзвездное пространство представляется абсолютно черным. Голубой цвет неба в дневное время, который видит человек в повседневной жизни, является следствием рассеяния и поглощения потоков солнечного света атомами и молекулами воздуха.

В последнее время тороидальные модели сделались объектом пристального внимания ученых. Особенно перспективными представляются они при познании глубинных уровней строения материи. В полной мере сказанное относится и к раскрытию тайн света (и тьмы). Фотон по-прежнему таит в себе множество загадок. Вот одна из них. В каждом кубическом сантиметре космического пространства содержится N фотонов, несущих практически полную информацию обо всех объектах Вселенной, численность которых в принципе бесконечна. Спрашивается: каким именно образом ограниченное количество фотонов передает информацию о таком бесконечном числе объектов? И наоборот: как каждый отдельно взятый конечный объект передает по существу бесконечное число фотонов, которые должны наполнить информацией о данном конечном объекте всю бесконечную Вселенную (дабы в каждой точке пространства содержался необходимый объем информации)?

 

ЗАГАДКИ КОСМИЧЕСКОГО ИЗЛУЧЕНИЯ

У световых фотонов и их потоков, помимо тайны происхождения и самой их физической природы, есть еще одна, не менее волнующая загадка, связанная с закономерностями их распространения. Данная проблема представляется актуальной в рамках теории относительности, или по-другому – релятивистской теории (от лат. relativus – относительный).

Вопреки распространенному мнению и несмотря на устоявшееся наименование, теория относительности на самом деле является теорией типичной абсолютности, в которой на месте старых низвергнутых абсолютов были немедленно воздвигнуты новые (что обычно предпочитают замалчивать). На эту характерную черту научного детища Эйнштейна, кстати, обращал внимание еще Макс Планк: одна из его работ на данную тему так и называлась – "От относительного к абсолютному" (ее перевод на русский язык публиковался отдельной брошюрой единственный раз в Вологде в 1925 году).

В релятивистской теории абсолютизировано все – от оснований до следствий. Имеются также и неявные, замаскированные абсолюты, играющие тем не менее роковую и самоубийственную роль. Так, в теории относительности, вопреки очевидности и формально провозглашенному равноправию всех (то есть неограниченного множества) иперциальных систем отсчета, абсолютизируются всего лишь две из них, находящиеся друг с другом в совершенно конкретных отношениях равномерного и прямолинейного перемещения (что, собственно, и описывается при помощи преобразований Лоренца). А формально-математические результаты, полученные применительно только к этим двум системам отсчета, затем произвольно обобщаются и экстраполируются на весь многообразный мир. На этой абсолютизированной основе и покоится все здание теории относительности, обросшее за время ее существования множеством пристроек. В действительности – и в этом суть – количество соотносящихся друг с другом физических тел и процессов или же материальных систем – неисчерпаемо. Причем закономерности их соотношения (существуют особые законы отношения, как правило, никем не учитываемые) таковы, что отношения даже трех систем – а тем более и множества – не тождественны отношению двух (то есть минимума).

Кстати, и в специальной теории относительности (СТО), вопреки господствующему представлению, действуют не две, а три системы отсчета: третьей выступает свет (то есть совокупность рассмотренных выше фотонов) – реальный, самостоятельный и независимый от механического перемещения инерциальных систем электромагнитный процесс. В Лоренцовых преобразованиях реальное световое движение отображено в виде самостоятельного члена – с, причем таким образом, что с ним (а точнее – с его абсолютизированной скоростью, возведенной в ранг абсолютной константы) соподчиняются остальные два члена реального трехэлементного отношения, а именно – движущаяся и покоящаяся системы отсчета. Уже отсюда следует, что распространенные интерпретации преобразований Лоренца некорректны по той простой причине, что не учитывают трехчленность описываемой в них реальной системы, принимаемой за двухчленную.

Между тем достаточно сопоставить с двумя (или тремя) системами отсчета, абсолютизированными в рамках СТО, еще одну или несколько – и весь храм релятивистской физики зашатается. Ничто не мешает, к примеру, взять 4-5-10-100 и т.д. систем отсчета и произвести поочередные или групповые преобразования их пространственных и временных координат. И всякий раз перед изумленным взором будет открываться "новый дивный мир", который зачастую не способен вместить человеческое воображение, если только не отвлечься от того самоочевидного факта, что каждая из образуемых в результате математических преобразований моделей действительности – всего лишь игра нашего теоретического мышления или, как говорили в старину, спекулятивная конструкция, подгонять под которую природу – одно из самых бесполезных и неблагодарных дел. Зыбкость релятивистской картины мира обнаруживается, если произвести "обращение" положенных в ее основу формул. Поскольку все системы отсчета равноправны, постольку любую из них можно считать условно покоящейся, в таком случае другая (или другие) будет условно движущейся. Например, пуля, выпущенная из пистолета, может быть принята в качестве условно покоящейся системы отсчета; в таком случае сам пистолет, стрелок, земная поверхность, окружающая среда и т.д. могут быть рассмотрены как движущиеся относительно условно неподвижной пули. Чтобы воочию убедиться в искусственности и абсурдности подобного подхода в понимании фундаментальных закономерностей материального мира, в качестве условно неподвижной системы отсчета достаточно взять одиночный фотон (или группу фотонов). Оказывается, что при этом весь остальной объективный мир во всем его многообразии и неисчерпаемости должен, согласно канонам СТО, разлетаться со световой скоростью относительно условно неподвижного фотона.

Аналогичным образом можно рассмотреть и движение фотонов относительно уже неоднократно упоминавшейся космологической сингулярности (бесконечно плотной точки, радиус которой близок к нулю) после пресловутого "Большого взрыва". Любой фотон, находящийся на границе расширяющейся световой сферы, может быть принят за условно неподвижную систему. В таком случае сингулярная точка должна рассматриваться как система координат, удаляющаяся со световой скоростью от каждого такого фотона. Нет необходимости добавлять, что одновременное удаление центральной точки сразу от всех фотонов, расположенных по кромке сферической волны, является верхом алогичности и бессмысленности, на чем вряд ли станут настаивать даже самые твердолобые апологеты релятивистской теории. Тем самым наглядно обнаруживается принцип самоликвидности, изначально заложенный в релятивистской теории: достаточно последовательно довести до логического конца ее собственные постулаты (то есть произвести обращение преобразований), и вся теоретическая система самоликвидируется ввиду непреодолимых противоречий.

Но в теории относительности абсолютизируются отношения не только инерциальных систем и их составляющих, но также и особый способ определения одновременности удаленных событий с помощью посылки электромагнитного сигнала к удаленному объекту и соответствующих расчетов после его возвращения назад. Однако, подобный трудноосуществимый способ не является единственно возможным. Во-первых, синхронизация часов может быть произведена при помощи не только искусственных, но и естественных сигналов. Естественными природными сигналами являются, к примеру, вспышки сверхновых звезд, распространяющиеся в виде гигантских сферических световых волн в Галактике и далеко за ее пределами. Так, в феврале 1987 года все информационные агентства мира сообщили о вспышке сверхновой звезды в галактике Большое Магелланово Облако, которая произошла 170 тысяч лет назад (такое время потребовалось свету, чтобы достичь Земли).

Сферическая волна, образовавшаяся в результате вспышки этой сверхновой звезды, как бы живет самостоятельной жизнью во Вселенной, подчиняясь конкретным физическим законам. Подобно колоссальному, космических размеров мыльному пузырю, непрерывно расширяющемуся со скоростью света и охватывающему все новые и новые просторы Вселенной, она "засекает" фронтом своего прохождения неисчислимое множество разнообразных материальных объектов. Отсюда следует, что прохождение световой волны через определенные участки Галактики, фиксируемое в виде начала вспышки (или ее окончания), является одновременным для всего неограниченного множества точек, расположенных на одинаковом расстоянии от источника. Все события, происходящие в данный момент на этих участках космического пространства, будут одновременными. Если в данных точках разместить атомные часы, которые включались бы в момент прохождения волны, то все эти часы, разделенные каким угодно расстоянием, заработали бы одновременно и пошли синхронно.

Во-вторых, одновременность можно зафиксировать без всяких сигналов, опираясь в основном на геометрические и тригонометрические методы (хотя и учитывая при этом физические и космические процессы). Например, добиться синхронизации удаленных друг от друга часов вполне допустимо путем измерения углов. Так, на основе учета периода собственного вращения вокруг оси Земли и Марса, а также их движения вокруг Солнца, на обеих планетах можно найти две такие точки, где заранее выбранная звезда будет наблюдаться под одним и тем же углом. Данный момент и позволит синхронизировать некоторые исходные точки временного отсчета на обеих планетах (рис. 120).

Предлагаемый способ определения одновременности вовсе не ограничен пределами Солнечной системы. Ничто не мешает расширить его до галактических масштабов. Обозначим Землю по-прежнему точкой А, точку В свяжем с каким-нибудь материальным объектом в противоположном конце нашей Галактики, а точкой С обозначим удаленную соседнюю галактику, но такую, которая находилась бы под удобным для измерений углом (рис. 121). (Конечно, более наглядным вариантом для разъясняемого случая явилась бы объемная модель Вселенной, но чертеж также позволяет уловить суть дела.) Если перпендикулярно к направлениям АС и ВС в точках А и В запустить игрушечные волчки с засечками, то моменты прохождения засечек через линии АС и ВС были бы приблизительно одновременны (разумеется, с учетом конечной скорости света). Волчок – слишком грубый измерительный "прибор", но нам он нужен только для аналогии. Для абсолютно точных замеров уместно воспользоваться оптическими (лазерными) гироскопами (приборами, где два лазерных луча движутся навстречу друг другу по замкнутому, близкому к окружности пространству). Предположим, что на линиях АС и ВС, перпендикулярных к бегающим лазерным лучам, установлены счетчики фотонов. Каждое "щелканье" счетчика в точке А будет одновременным со "щелканьем" в точке В. Интервалы между двумя "щелканьями" тоже одновременны.

Конечно, все это несколько усложненные и громоздкие мысленные эксперименты, требующие дополнительной информации об условиях их проведения. Но они понадобились, чтобы продемонстрировать две простые истины: 1) Сигнальный способ определения одновременности, развиваемый в релятивистской теории, не является единственно возможным. 2) Атомные часы в любой точке Вселенной идут синхронно и отбивают ритм настоящего, фиксируя в каждом уголке бесконечного материального мира неуловимое "теперь" (каждый промежуток времени между тактами, отбиваемыми атомными часами, равен одной тысячемиллионной доле секунды). Сказанное – самоочевидные факты. Ибо настоящее не может быть в разных точках разным: скажем, в нашей Галактике оно настоящее, а в какой-либо другой – прошлое.

Проблема эмпирического мгновения – одна из глубочайших загадок природы, при решении которой вскрывается реальное содержание, не менее богатое, чем то, которое нами осознается в безбрежности пространства-времени Космоса. На примере распространения сферической световой волны наглядно видно, что любые события, оказавшиеся в определенный момент времени на линии фронта прохождения волны, объективно происходят в одно и то же мгновение. В литературе широко распространена точка зрения, согласно которой понятие мгновенности не имеет физического смысла, поскольку оно будто бы является следствием преодоленного наукой представления о дальнодействии и бесконечных скоростях. Oднако подобный подход вытекает из глубоко укоренившегося мнения об отсутствии скоростей, превышающих скорость света. Мифический закон "предельности скорости света", представляющий собой типичную абсолютизацию и фетишизацию конкретного математического соотношения, не выдерживает никакой критики. Вывод о существовании якобы непреодолимого "светового барьера" зиждется на сугубо формальных основаниях: подкоренное выражение релятивистского коэффициента

___________
Ц 1- V2

C2

обращается в нуль, если V = с , а извлечение корня из нуля недопустимо.

Законы математики есть законы математики – против них ничего не попишешь. Однако одно дело объективные физические закономерности, и совсем другое – их математическое описание. Все эффекты, вытекающие из преобразований Лоренца, касаются в первую очередь численных значений, возникающих из соотношения между механическим перемещением инерциальной системы отсчета и процессом распространения света. Данное объективное отношение, будучи выражено в математической форме, может принимать любые численные значения, включая нулевые и бесконечные. Но это вовсе не налагает непременного запрета на движение в зависимости от того, что получается в результате конкретных математических преобразований или расчетов – нуль или бесконечность. Если вместо скорости света подставить в релятивистские формулы скорость звука (что вполне допустимо, и такие подстановки, отображающие реальные физические ситуации, делались), то получится аналогичный результат: подкоренное выражение релятивистского коэффициента способно обратиться в нуль. Но никому же не приходит в голову утверждать на этом основании, будто бы в природе недопустима скорость, превышающая скорость звука. Чем же в таком случае оправдать абсолютизацию математического отношения, из которого якобы вытекает "предельность скорости света"?

Уже многие ревностные адепты релятивистской теории признали нелепость предположения о невозможности превзойти скорость счета в вакууме. Уже разработана экспериментально подтвержденная торсионная теория (о которой подробно говорилось выше), допускающая любые скорости, превышающие скорость света. [Добавим, что еще раньше то же самое на основе своей тороидальной модели фотона теоретически обосновал В.П. Селезнев; полученные выводы были подтверждены с помощью оригинальной установки, в основу которой были положены лазерные гироскопы и система зеркал]. Уже получили объяснение пульсары – звездные объекты с мощными источниками радиоимпульсов. Пульсар, как игрушка-волчок, быстро вращается вокруг собственной оси, а направленный радиолуч за короткий промежуток времени описывает во Вселенной гигантские окружности, задевая при этом и нашу Землю. Скорость, с которой мчится по кругу конец радиолуча, значительно превосходит скорость света. Наконец, уже обнаружены внегалактические объекты, обладающие собственной сверхсветовой скоростью. А рьяные авторы, талмудистски трактующие релятивистские формулы, продолжают по-прежнему дезориентировать доверчивых читателей, накладывая бессмысленные запреты и ограничения как на законы природы, так и на процесс общенаучного познания*.

Казалось бы, релятивистская теория с самого начала задает нам космический настрой, задает направления и ориентиры, позволяющие постигнуть глубинные закономерности структуры и эволюции Вселенной. Однако при ближайшем рассмотрении исходных оснований и конечных выводов, при раскрытии их материальных корней обнаруживается, что базисные понятия, принципы и добытые с их помощью результаты имеют совершенно иное объективное содержание, иногда прямо противоположное тому, которое виделось творцам релятивистской картины мира. Однобокая и мистифицированная, она оказывается наименее совместимой с живым, многоцветным и неисчерпаемым Космосом, и прежде всего потому, что подгоняет его уникальное многообразие под тощие абстракции, оторванные от той самой природной действительности, которую они отображают.

 

ОТНОСИТЕЛЬНОСТЬ – ФУНДАМЕНТАЛЬНАЯ ТАЙНА МИРОЗДАНИЯ

В проанализированных фактах проявляется методологическая абстрактность релятивистских теоретических интерпретаций, их полнейший отрыв от конкретной действительности или, говоря философским языком, умышленный уход от конкретного анализа конкретной ситуации. Самой абстрактной из всех абстракций в системе современного теоретического знания выступает понятие "отношение", являющееся основополагающим во всех естественных науках, связанных с математикой, и в самих математических дисциплинах. Между тем данное понятие, как ни странно, не было подвергнуто методологическому анализу даже в релятивистской теории, где понятие "отношение" положено в само название теории относительности. Странная, скажем прямо, ситуация для науки: объявляют принцип относительности исходным, возводят в ранг критерия применительно ко всем остальным следствиям, но не задаются главным, коренным вопросом, что же такое относительность как ипостась реальности и что такое образующие ее отношения как объективная действительность. Другими словами, наука довольствуется чистой абстракцией "отношение".

Между тем относительность – всеобщее универсальное свойство материального мира, проистекающее из его космического всеединства. В данном случае относительность выступает как всеобщее и неотъемлемое свойство ее природы, поскольку каждое из конечных проявлений находится в неисчерпаемых отношениях со всеми остальными.

Однако в реальных познавательных ситуациях относительность изучается, как правило, не в качестве всеобщего и универсального свойства (такая задача, да и то отчасти, стоит только перед философией), а в виде совершенно определенных отношений между определенными вещами или же элементами, организованными в целостную систему. В таком случае об относительности говорят, во-первых, в смысле конкретных отношений, свойственных тому или иному явлению, а, во-вторых, в смысле относимости (отнесенности) определенных свойств, характеристик, параметров и т.д. к одному или ко всем элементам, находящимся в данном отношении.

В бесконечной развивающейся Вселенной относительность проявляется в форме многообразных материальных отношении (физических, космических, химических, биологических, информационно-сигнальных и др.). И именно космическое видение предмета исследования позволяет понять конкретность отношений в том реальном виде, в каком они проявляются в природе.

При познании объективных природных отношений необходимо учитывать ряд моментов. Прежде всего укажем на неисчерпаемость тех отношений, в которые может вступать любая материальная вещь. По существу любой объект – песчинка, молекула, атом – находится во множестве отношений со всем бесконечным многообразием материального мира. В ходе познания неизбежно приходится отвлекаться от бесконечного многообразия этих отношений, вычленяя отдельные из них и сосредоточивая на них внимание.

Отношения носят конкретный характер. Принцип конкретности истины позволяет четко определить, о каких именно отношениях идет речь в каждом отдельном случае. "Отношений вообще" не существует. Это либо материальные, либо идеальные отношения. В свою очередь, они могут быть подразделены на: 1) изолированные и взаимосвязанные; 2) внешние и внутренние; 3) двучленные и многочленные; 4) прерывные и непрерывные и т.д. В зависимости от конкретного характера отношение может принимать то или иное (подчас прямо противоположное) значение. Например, детский воздушный шарик больше биллиардного по объему, но меньше по весу; Солнце больше Луны по массе, но угол, под которым оно наблюдается с Земли, меньше (поэтому и возможны солнечные затмения).

Наконец, об отношениях и результатах конкретных отношений судят, как правило, по тем субъектам, вещам, элементам, которые в данном отношении находятся. А между тем отношения не изменяют самого субъекта отношений, хотя, разумеется, обусловливают его свойства, функции или же деятельность (если речь идет о человеке). Так, один и тот же мужчина может на протяжении своей жизни последовательно, а подчас и одновременно находиться в различных родственных отношениях: сначала он сын, брат, племянник, в дальнейшем – муж, зять, отец, дедушка. На данный аспект обращал внимание еще Лейбниц: "Может произойти перемена отношения без всякой перемены в субъекте. Тиций, являющийся сегодня отцом, перестает им быть завтра без всякой перемены в нем только потому, что его сын умер"*. Понятно, что изменение родственных отношений не изменяет внешнего облика их носителя (естественное старение здесь, разумеется, ни при чем), хотя и накладывает на человека определенные обязанности, которые в конечном счете обусловливают его конкретные действия. Но подобное отношение, при котором субъекты (или образующие его элементы, если имеется в виду неживая или досоциальная природа) вступают во взаимодействие, является уже связью. Таким образом, абстрактных отношений, "отношений вообще" (то есть ни к чему не относящихся) в материальной действительности не существует.

Бессмысленность и абсурдность отрыва отношений от своих носителей и тех объективных реалий, которые они соединяют, наглядно обнаруживаются на примере грамматики. Так, предлог как вспомогательная часть речи служит для обозначения отношений одних слов к другим. Конкретный смысл в словосочетаниях или предложениях предлоги обретают лишь в контексте тех слов, которые с их помощью соединяются.

По одним предлогам ("на", "в", "от", "из", "к", "у" и т.д.) без связуемых невозможно понять, о чем пойдет речь в предложении, для этого необходимо обратиться к реальному тексту. Точно так же и с релятивистскими математическими отношениями: нам как бы предлагается текст, состоящий из одних предлогов. Ограничиваться этим просто недостаточно – необходимо сделать следующий шаг: перейти от отношений к их носителям и тем реалиям, которые ими соединены или соподчинены.

Необходимое условие конкретного (а следовательно, правильного) понимания отношений – различение отношений внешних и внутренних. Существующее между ними различие имеет исключительно важное значение, ибо закономерности, присущие внешним отношениям, отнюдь не тождественны закономерностям, характеризующим отношения внутренние. Если элементы, образующие внешние, изолированные отношения, не зависят друг от друга, то элементы внутренних отношений связаны между собой в рамках определенной системы.

Любые внешние отношения могут считаться таковыми только до известного предела; всегда имеется определенная система, по отношению к которой они выступают уже как внутренние. Предельно общей системой для всех объективно реальных отношений является Вселенная как единое целое. Собственно говоря, в виде самостоятельных внешних отношений они способны функционировать лишь до тех пор, пока не подвергаются воздействию со стороны более общей системы. Так, Солнце и вращающиеся вокруг него планеты являются более общей системой по отношению ко всему, что связано с Землей (включая и человеческое общество). Поэтому внезапная гибель Солнца и распад Солнечной системы привели бы к уничтожению всех имевшихся в рамках существовавшей системы внешних (то есть не связанных между собой) отношений, которые в данном предельном случае проявляли бы себя уже как внутренние (то есть неразрывно связанные с целостной системой).

Итак, проблема заключается в следующем: представляют ли собой отношения нечто единообразное, монотонное и настолько очевидное, что над ними вовсе не стоит ломать голову. Или же, напротив, они далеко не бескачественны, не бестелесны и не бесструктурны, им присущи характерные особенности, и, как все в объективном мире, отношения подчиняются определенным закономерностям, находящимся, в свою очередь, в неразрывной взаимосвязи с другими природными законами.

Ведь зачастую специфика и многообразие отношений нивелируются; даже если и делается различие между внешними и внутренними отношениями, то закономерности, отличающие их друг от друга, отождествляются. Случается, что один из видов отношений возводится в ранг универсальности, абсолютизируется, а свойства, характеризующие конкретную определенность отношений (то есть их конкретное основание), переносятся на все многообразие отношений, составляющих данное явление. В действительности же отношения одного типа далеко не в каждом случае оказывают непосредственное влияние на отношения другого типа, отличного от первого по конкретному основанию. Подобная абсолютизация и нивелировка заходят еще дальше: отношения, представляющие собой сосуществование определенных элементов, отождествляются с самостоятельным существованием самих элементов или образуемой ими системы.

Нетрудно понять, почему происходит такое отождествление. Поскольку об отношениях обычно судят по соотносящимся субъектам, вещам, элементам и т.п., постольку и понятия, обозначающие конкретные отношения, подчас невольно переносят на сами эти вещи, элементы, на самих субъектов. Называя человека чьим-то братом, как бы персонифицируют понятие данного родственного отношения, переносят его на само лицо, отождествляя с конкретным индивидом, хотя понятие "брат" не означает ничего, кроме соответствующего родственного отношения, и ни у кого на лице не написано, что он (она) чей-то (чья-то) брат (сестра).

При этом конкретный анализ конкретной ситуации не просто указывает на материальную основу объективных отношений (это первый, но не единственный шаг в процессе познания). Он помогает установить также и конкретный характер данных отношений. Например, большинство физических закономерностей получает строгое математическое описание и выражается в виде разнообразных формул. Любая такая формула сама по себе есть определенное математическое соотношение, элементы которого находятся во внешней количественной взаимозависимости. Подобная структура формулы всего лишь результат знакового выражения, в то время как сами объективные отношения, описываемые формулами, могут быть не только внешними, но и внутренними. В свою очередь, проекция абстрактно-математического описания (формулы) на природную действительность помогает точно установить конкретный характер объективных отношений, отображенных в той или иной формуле.

Так, большинство химических формул описывает либо внутреннюю структуру вещества, либо внутренние отношения в процессе химических реакций. А многие физические формулы, описывая внешние отношения между природными процессами и явлениями, вместе с тем раскрывают и внутреннюю закономерную связь. Например, закон Кулона (и соответствующая ему формула) фиксирует не только внешнее отношение между двумя покоящимися электромагнитными зарядами, но и силу данного взаимодействия.

Характерная особенность абстрактного мышления (как и художественного) состоит в том, что оно может свободно манипулировать понятиями (и представлениями), способно конструировать из них "сцепления" любой степени сложности. Но от игры нашей мысли, воображения и фантазии материальная действительность не меняется. Она действует по собственным законам, а не по произволу мышления. Поэтому при обосновании понятий, разработке теории или получении новых выводов задача науки – не произвольно интерпретировать концептуальные результаты, а объяснять их в строгом соответствии с отображенными в них сторонами, отношениями, законами материального мира и закономерностями самого процесса познания. Так, понятия, образующие математическую формулу (как об этом уже говорилось выше), находятся между собой в "жестких" отношениях в составе конкретной формулы и отображают столь же конкретные отношения (или законы как устойчивые, повторяющиеся, необходимые связи и отношения) материального мира.

Исходя из всего вышесказанного, уместно суммировать закономерности объективных отношений, играющих непреходящую роль в осмыслении Космоса, всех природных и социальных явлений, а также в любой из фундаментальных или частных наук, логике, методологии и теории познаний.

  1. Отношение представляет собой сосуществование конечных материальных или идеальных элементов. И те, и другие подразделяются на внешние и внутренние.
  2. Элементы, находящиеся во внешнем отношении, не зависят друг от друга.
  3. Элементы внутренних отношений связаны друг с другом в рамках определенной системы.
  4. Внутренние отношения, составляющие определенную целостность, будучи абстрагированными от данной целостности, могут рассматриваться по отношению друг к другу как внешние.
  5. Если элементы, находящиеся во внешнем отношении, начинают взаимодействовать, то они образуют систему и преобразовываются во внутренние отношения.
  6. Для любой системы внешних отношений можно отыскать другую систему, по отношению к которой они будут выступать как внутренние.
  7. Общей системой для всех объективно-реальных отношений является Вселенная как единое целое.
  8. Особым типом отношения между материальным (первичным) и идеальным (вторичным) является психическое отражение. Мысленные отношения представляют собой образы (схемы, модели, матрицы) отношений объективной действительности (включая и отношение к ней познающего и преобразующего субъекта). Идеальные отношения отображают материальные опосредованно, а будучи оторванными от последних – искаженно.
  9. Отношения между идеальными элементами – и внутренние (в процессе индивидуального мышления), и внешние (при обмене информацией или в процессе коллективного мышления) – складываются свободно, но истинность полученных выводов (а также истинность и правильная упорядоченность знания, участвующего в мыслительных актах) полностью зависит от их соответствия объективной действительности.
  10. Элементы материальных отношений (внешних и внутренних) выступают в виде определенного субстрата. Результат соотнесения (сопоставления, сравнения) различных субстратов и представляет собой отношение. Без субстрата нет отношения.
  11. Материальный субстрат не тождественен отношениям, в которых он находится. Само отношение (как результат сопоставления материальных элементов) носит объективно-реальный характер, но не имеет собственной субстратной формы, отдельной от элементов отношения.
  12. Отношение (результат сопоставления) двух материальных элементов (субстратов) не тождественно отношению трех и более элементов. И наоборот.
  13. Отношение конкретно: как не существует отношения без образующих его элементов, так и не существует отношения без определенного признака, по которому соотносятся элементы.
  14. Изменение отношения по одному признаку не обязательно ведет к изменению по другим признакам.
  15. Изменение субстрата элементов, находящихся во внешнем отношении, изменяет само отношение. Изменения в отношениях элементов не влияют непосредственно на материальный субстрат.
  16. Внутренние отношения целостной системы непосредственно обусловливают ее структуру и состояние. Изменение внутренних отношений системы приводит к изменению самой системы и влияет на внешние отношения, в которых она находится. Изолированные внешние отношения системы не влияют на ее внутренние отношения.

В отличие от конкретного подхода к сути объективных отношений в релятивистской теории и всех ее интерпретациях абстрактностью заражено не только представление о самих отношениях, но и о носителях таких отношений. Поскольку нет и не может быть отношений без того, что относится, постольку в каждом конкретном случае необходимо указывать на ту физическую (или иную) реальность, которая находится в тех или иных отношениях. Даже если в математических формулах присутствует такой совершенно конкретный физический процесс, как свет, он понимается изолированно и односторонне (например, в релятивистских формулах свет рассматривается лишь со стороны его скорости). И только космистский подход, космическое мышление и космическое видение предмета позволяет понять и представить свет (или фотон) в целостной взаимосвязи с другими природными процессами и явлениями. Тем самым свет предстает не в виде изолированных лучей в соотнесении с перемещающимися механическими системами отсчета, а во взаимоотношении с другими электромагнитными полями, звездным и галактическим миром. Космическое видение мира не приемлет какой бы то ни было абстрактизации, возведенной в ранг абсолюта. Космос – это всегда многоцветие жизни, света и других явлений природы. И именно это позволяет преодолеть абсурдность ряда интерпретаций в понимании конкретных физических явлений.

Так, в своего рода самостоятельную – и даже овеществленную – сущность превращена в релятивистской теории (да и не только в ней) скорость. Скорость – важнейшая характеристика движения материальных объектов. Однако напомним, что скорость, выражая отношение пространства (пути, расстояния) ко времени, как самостоятельная субстанция в природе не существует (реально наличествуют лишь движущиеся тела и процессы). Тем не менее абсолютная световая константа в теории относительности выступает в качестве самостоятельно-самодовлеющей и по существу субстанциализированной величины. Не останавливаясь специально на мифическом "законе предельности скорости света", отвергнутом самими же релятивистскими ортодоксами, коснемся хотя бы вскользь другого теоретического фантома - так называемого принципа постоянства скорости света.

В повседневной и научной практике обычно измеряется скорость какого-либо одного материального объекта относительно другого. При этом неизбежно происходит отвлечение (абстрагирование) от движения других аналогичных объектов. Действительность же такова, что каждое движущееся тело находится в неисчерпаемых разноскоростных отношениях с бесчисленным множеством других физических тел, непрерывно перемещающихся в разных направлениях и с различными скоростями. Другими словами, скорость не является уникальной характеристикой материальных тел, наподобие протяженности или массы. Одному и тому же телу одновременно присуще неисчерпаемое множество скоростей различной величины.

Если же еще раз теперь попытаться сопоставить с данным непреложным фактом так называемый принцип постоянства скорости света, то со всей очевидностью обнаруживается полная несостоятельность и абсурдность последнего. Для этого обратимся еще раз к движению одиночного фотона, рассматриваемому в соответствии с правилами релятивистской игры в качестве условно неподвижной системы отсчета. Рассмотрим сквозь призму данной конкретной ситуации постоянство скорости света. Если бы такое было бы возможно на самом деле, то, произведя вновь "обращение" релятивистских формул, мы немедленно обнаружили бы: в ситуации условно покоящегося фотона любые источники и приемники света (то есть все бесконечное многообразие объектов материального мира) обязаны были бы двигаться относительно такого фотона с одной и той же постоянной и неменяющейся скоростью, что противоречит самоочевидным фактам. Кроме того, достигая приемника, в качестве которого выступает любой объект на пути движения света, фотон теряет свою первоначальную скорость (с ъ 0), и уже поэтому его скорость не может считаться всегда постоянной.

По мнению В.П. Селезнева, опыт Майкельсона, доказавший якобы невозможность обнаружения механического эфира, а значит, и отсутствие такового, не является доказательством правильности постулата постоянства скорости света. Это связано с тем, что интерферометр как прибор, предназначенный для фиксации смещения длин волн, в принципе не может служить для измерения скорости электромагнитного излучения, а отрицательный результат опыта Майкельсона (отсутствие интерференционной картины) служит доказательством постоянства длины волны – не более.

Иными словами, в распространенных трактовках теории относительности все кинематическое и электродинамическое богатство Космоса пытаются в угоду чисто формальным соображениям подогнать под изначально уязвимую схему постоянства скорости света. Наподобие ловких портных в сказке о голом короле, нас хотят уверить (и, как ни странно, большинство с этим соглашается), что в неисчерпаемой и многообразной Вселенной световые волны двигаются с одной и той же неизменной скоростью ко множеству других объектов, которые в это же самое время перемещаются с различными, не совпадающими друг с другом скоростями.

Космос всегда олицетворял бесконечность пространства и вечность времени, он же являет собой всеобъемлющий пространственно-временной Континуум. Релятивистская картина мира, претендующая на истину в последней инстанции, в главных своих частях также опирается на своеобразно истолкованные реалии пространства, времени, бесконечности (неограниченности); вместе с тем ей не только недостает системности и целостности, но и в отдельно взятых фрагментах этой научной мозаики при внимательном и непредвзятом рассмотрении обнаруживаются серьезные изъяны. Для подтверждения сказанного достаточно беспристрастно проанализировать релятивистские эффекты, относящиеся к пространственно-временным параметрам в движущихся системах отсчета.

 

ПРОСТОЙ СЕКРЕТ СЛОЖНЫХ ФОРМУЛ

Какую же, в таком случае, реальность описывают знаменитые релятивистские формулы, вытекающие из преобразований Лоренца? Только ту, которая зафиксирована в самих формулах, – и никакую другую, причем не в космических масштабах, а в строго определенных границах, очерченных самими же формулами: есть две системы отсчета – условно неподвижная и условно перемещающаяся (в любое время их можно поменять местами), а параллельно равномерному и прямолинейному перемещению движется луч света (что-то вроде следующего: лодка (в темноте) отплывает от берега, а в корму ей светят фонариком).

Обратимся к двум релятивистским формулам, хорошо известным из школьного курса физики:

Из приведенных формул следует, что в материальной системе отсчета, движущейся равномерно и прямолинейно относительно условно покоящейся системы и связанного с ней наблюдателя, временные промежутки "растягиваются" (течение времени "замедляется", отчего родители-космонавты могут якобы оказаться моложе собственных детей, оставшихся дома), а пространственные длины сокращаются. То есть по формуле: tѓ> t0; lѓ< l0

Так ли это? Разумеется, так. Но весь вопрос в том, как понимать фиксируемое "растяжение" и "сокращение". Вытекает ли из формул, что "замедляется" всякое время, связанное с перемещающейся системой отсчета, – и продолжительность жизни, и процессы мышления или рефлексы и биоритмы? И действительно ли укорачивается космический корабль, сплющиваются в нем все предметы, живые организмы и сами космонавты? Если рассуждать последовательно-реалистически, то упомянутые эффекты непосредственно из релятивистских формул не вытекают, а являются следствием их свободного истолкования.

Формула, как это ей и положено, описывает (отображает) строго определенные физические параметры и процессы, которые, собственно, и фиксируются в виде символических обозначений. Физическая формула может описывать только физические (а не химические, биологические, социальные) закономерности. Прямая экстраполяция формул на целостную Вселенную также недопустима. В данном смысле приведенные выше релятивистские формулы раскрывают всего лишь объективное отношение между механическим перемещением тела и синхронно-совместным с ним движением света. Соотнесенность этих двух физических явлений зафиксирована в подкоренном соотношении понятий v2 (скорость равномерного и прямолинейного перемещения инерциальной системы) и с2 (скорость света, движущегося параллельно той же системе). И то, и другое соотносится с третьим элементом реального трехчленного отношения – условно неподвижной системой отсчета.

Для наглядного пояснения действительной сути релятивистских эффектов воспользуемся образом Люмена, созданного Камилом Фламмарионом. Он был не только неутомимым пропагандистом новейших достижений естествознания, но и плодовитым автором, на книгах которого училось не одно поколение ученых во всем мире в конце прошлого – начале нынешнего века. Книги Фламмариона знала вся образованная Россия, не говоря уже о плеяде русских космистов. Несомненно их влияние и на научно-фантастическую прозу Циолковского. Большинство научно-популярных и беллетризированных работ Фламмариона переведены на русский язык. Среди них научно-фантастический роман "Люмен" (в одном из переводов на русский – со значительными дополнениями – он называется "На волнах бесконечности"). Люмен – бестелесное человекоподобное существо, дух, обуреваемый жаждой познания Вселенной и наделенный волшебным качеством – способностью мгновенно, со скоростью мысли перемещаться в любую точку пространства, наблюдать (подобно другому, уже упоминавшемуся фантому – демону Максвелла) любое физическое явление и даже общаться с потусторонним миром. Люмен мгновенно перемещается по бесконечным просторам Космоса, а возвратившись на землю, рассказывает об увиденном своему ученику (в форме их диалогов и написан весь роман).

Помимо воображаемого описания далеких миров, расположенных в различных созвездиях, и их обитателей, Фламмарион устами Люмена описывает поведение света в Космосе. Известно, что любая информация, идущая с помощью электромагнитных волн с Земли и имеющая конечную скорость, приходит к другим далеким мирам с запозданием на сотни и тысячи лет (подобно тому, как с запозданием доходит до Земли свет умерших звезд). Люмен, в частности, развлекается тем, что, перегнав свет, дожидается его в какой-то далекой звездной системе, а затем наблюдает живые картины исторического прошлого Земли (например, подробности событий Великой французской революции). Представляется, что с помощью Люмена нетрудно будет разобраться в физическом смысле релятивистских эффектов, касающихся света и пространственно-временных параметров движущихся объектов.

Итак, перенесемся мысленно вместе с Люменом на просторы Вселенной. Представим условно покоящийся прожектор, расположенный на уединенном космическом объекте, мимо которого с околосветовой скоростью, равномерно и прямолинейно проносится космический корабль (рис. 122). Прожектор включается и посылает световое излучение вслед ракете в момент, когда ее хвост оказывается в точке, возможно близкой от прожектора. Такая ситуация "соприкосновения" особенно удобна, поскольку позволяет, так сказать, непосредственно добиться одновременности событий и снять те вопросы, которые обычно возникают в теории относительности по поводу синхронизации часов. Для наибольшей наглядности поместим Люмена на кончике светового луча (точнее – фронта световой волны, поскольку сам свет в космическом пространстве невидим).

Допустим, что в покоящейся системе отсчета по ходу движения ракеты размещены ориентиры, позволяющие измерить пройденное расстояние. Предположим также, что Люмен запасся хронометром и намерен произвести некоторые расчеты. Сидя верхом на световом луче, он смог бы без труда констатировать уже известный нам факт: в различных системах отсчета свет за одно и то же время (по хронометру Люмена) проходит разный путь, а одинаковое расстояние преодолевает за различные промежутки времени. Так, за время, пока луч света преодолевает в покоящейся системе отсчета расстояние MN, равное длине ракеты, относительно удаляющейся ракеты он продвинется только до точки В. Другими словами, в движущейся системе световой луч пройдет расстояние, меньшее, "сокращенное" по сравнению с неподвижной системой координат (и тем меньшее, чем выше скорость ракеты). Аналогичным образом свету, излучаемому неподвижным прожектором, потребуется для преодоления длины летящей ракеты большее время, чем для прохождения того же самого расстояния в покоящейся системе (налицо все то же пресловутое "растяжение" временных событий).

Мысленный эксперимент можно повторить и в земных условиях, совершив воображаемое путешествие на поезде в точном соответствии с условиями, заданными в преобразованиях Лоренца. Рассмотрим движение светового луча, параллельного перемещению поезда и железнодорожному полотну. Для упрощения понимания даваемых разъяснений лучше всего представить, что поезд идет не по открытой местности, а вошел в туннель. Это позволит представить одновременное отображение распространения светового луча или фронта световой волны на стенках вагонов поезда и на стене туннеля. А для того, чтобы результаты измерений сделать зримыми и легко сопоставимыми, уместно допустить, что внешние стенки вагонов в стене туннеля покрыты фотоэмульсией.

Представим (рис. 123), что у входа в туннель неподвижно закреплен источник света – О, посылающий сигнал – ОР в направлении движения поезда MN. Источник включается в тот самый момент, когда с ним поравняется конец последнего вагона. Луч света движется вдогонку уходящему поезду. По мере того, как свет достигает головы состава, происходит засветка фотоэмульсии на стене туннеля и на внешних стенках (или крышах) вагонов по всей длине поезда.

Если допустить, что длина туннеля и железнодорожного состава достаточно велика, а поезд движется с околосветовой скоростью, то получим следующие результаты мысленного эксперимента. Чем выше равномерная скорость поезда, тем большее время потребуется свету, чтобы достичь головного вагона (это происходит потому, что начальная точка состава непрерывно убегает; по мере продвижения поезда вперед свет займет положение МѓNѓ. Если свет, догоняющий поезд, погаснет, как только достигнет головной точки (или отразится зеркалом в обратном направлении), то картина засветки фотоэмульсии на внешних стенках вагонов будет отличаться от картины, получившейся на стене туннеля.

Что же именно произойдет? Чтобы воочию уяснить это, поезд по окончании эксперимента придется остановить и вернуть назад к въезду в туннель. Если поместить конец последнего вагона вровень с источником света (то есть совместить точки А , М, O, откуда начиналось движение светового луча), то тень засветки на стене туннеля АВѓ=ОР окажется по длине больше, чем длина самого поезда – MN, и, соответственно, больше тени засветки на внешних стенках вагонов от их исходной до конечной точки. МN=MѓNѓ, но MN<ABѓ.

Получается, что один и тот же луч пробегает разное расстояние в движущейся и неподвижной системах отсчета: в движущейся системе отсчета длина пробега (в полном соответствии с преобразованиями Лоренца) оказывается короче, или, как принято говорить, длина "сокращается". Но "сокращается", как видно, не "длина вообще" и вовсе не длина поезда, а длина фиксации совершенно конкретного физического процесса, а именно – распространения света в одной из соотнесенных друг с другом систем отсчета. С самим же светом, как и с обеими системами отсчета, ничего не происходит: длина состава и зафиксированного отрезка туннеля какой была, такой и осталась. Однако объективно-реальная проекция процесса распространения света на системы отсчета оказалась разной.

Какой действительный физический смысл имеет в данной связи релятивистское "растяжение" временных интервалов? Что конкретно кроется за увеличением временного интервала в перемещающейся системе, как это вытекает из вышеприведенной формулы? Единственно, в движущейся системе отсчета свету потребуется больше времени, чтобы покрыть расстояние, одинаковое с зафиксированным отрезком покоящейся системы координат. В поезде, мчащемся сквозь туннель, такими одинаковыми пространственными отрезками будут длина самого поезда и соответствующее ей расстояние в покоящейся системе туннеля. Для преодоления длины мчащегося поезда свету потребуется больше времени, чем для прохождения того же самого расстояния, отмеренного на железнодорожном полотне или на стене туннеля.

Преодолев за определенный промежуток времени конечный отрезок АВ, луч света не достигнет при этом одновременно и головы поезда, которая за истекший временной отрезок успеет вместе с поездом убежать вперед. Для того, чтобы свету достигнуть головы переднего вагона (ни вагоны, ни поезд в целом, при этом, естественно, своей длины не меняют, а просто перемещаются вперед), потребуется дополнительное время. Понятно, что в совокупности данный временной интервал будет неизбежно превышать время, которое требуется для преодоления того же расстояния в неподвижной системе отсчета. Сравнивая результаты измерения, обнаружим, что временной интервал в движущейся системе как бы "растягивается". В действительности же один и тот же световой сигнал, излученный в один и тот же момент из одного и того же источника, затратит различное время для преодоления одного и того же расстояния в различных системах отсчета, и в движущейся системе это время будет тем большим, чем выше скорость системы.

Ничего другого релятивистские формулы не означают (разве что в них рассматривается поперечный снос светового луча света, что и дает, по теореме Пифагора, подкоренное выражение). И означать не могут – по той простой причине, что описывают совершенно конкретное соотношение между электромагнитными процессами (движение света) и равномерно-прямолинейным перемещением физической системы. Все остальное – результат домыслов и предположений. И задача космического миропонимания – найти в разного рода догадках рациональное зерно и отделить зерна от плевел.

Почему так существенно рассматривать совместное параллельное движение светового луча, с одной стороны, и поезда, ракеты или любого другого материального объекта - с другой? Потому что таковы конкретные условия, задаваемые преобразованиями Лоренца, из которых выводятся релятивистские формулы. В проанализированных выше примерах системы отсчета привлекаются не поочередно (как это делается во всех работах, посвященных теории относительности), а одновременно, в триединстве с процессом электромагнитного излучения, ибо таков объективный смысл преобразования координат. Кроме того, в отличие от распространенных трактовок релятивистских эффектов, существенно важно рассматривать не поведение света с точки зрения наблюдателей, находящихся в разных системах отсчета, а наоборот, обе системы (покоящуюся и движущуюся) – с точки зрения движения электромагнитных волн.

При этом скорость электромагнитного излучения не изменяется, но меняется скорость движущейся системы относительно излучения как самостоятельной, третьей системы отсчета. Это – тривиальный, само собой разумеющийся факт, и именно он раскрывает секрет всего фокуса. Именно здесь коренится недостаток подавляющего большинства интерпретаций релятивистских эффектов: все пытаются объяснить, исходя из двух систем отсчета, а их на самом деле три, а может быть и больше (двойственное же отношение, как известно, не тождественно тройственному или множественному).

Кроме того, в распространенных интерпретациях релятивистских эффектов положения, справедливые для узколокальной области физических явлений, без достаточных на то оснований переносятся на более широкий круг явлений и в конечном счете – на Вселенную в целом. Такой перенос релятивистских выводов на всю природу совершается по принципу известной логической ошибки "от сказанного в относительном смысле к сказанному безотносительно": положения, справедливые для локальных физических закономерностей (разумеется, при условия их правильного истолкования), распространяются на природу в целом, на все формы движения материи, на любые – известные или пока еще не открытые – закономерности.

Почему так происходит, в общем-то понятно. Из релятивистских формул вытекает, что при больших скоростях временные промежутки в движущихся системах в сравнении с неподвижными "растягиваются", течение времени "замедляется" (в каком именно смысле и почему, было только что проиллюстрировано). Невольно создается впечатление, что коль скоро фиксируется изменение течения времени (на самом деле иллюзорное), то данное время относится ко всем без исключения вещам и существам, связанным с движущейся системой отсчета. Однако такой вывод неправомерен. Время в релятивистских формулах выведено из соотношения скоростей – световой и механической. Вполне допустимо утверждать, что такое соотношение реальных физических процессов способно выступать в роли своеобразных часов, с которыми может сверяться длительность всех остальных событий. Между тем хорошо известно, что изменение в ходе часов совсем не обязательно ведет к изменению продолжительности других, внешних по отношению к часам явлений. Часы на чьей-то руке могут спешить, отставать или вообще остановиться, но это вовсе не сказывается, скажем, на физиологических процессах, происходящих в организме. В ситуациях, описываемых релятивистскими формулами, попросту абсолютизируются некоторые идеализированные часы, которые при внимательном рассмотрении оказываются конкретным соотношением двух физических процессов (светового и механического перемещения), не влияющих непосредственно на другие физические явления (например, атомные и субатомные) и тем более – на биологические или социальные.

Уже отмечалось: то, что справедливо для одной группы отношений, отнюдь не обязательно для других. Так, совершенно неоднозначно влияют друг на друга внешне изолированные отношения и внутренние (связи). Закономерности их взаимообусловленности, как уже было сказано в предыдущей главе, таковы: внешние (изолированные) отношения (к ним относятся и релятивистские системы отсчета) не оказывают непосредственного влияния на внутренние отношения. Но для любых внешних отношений всегда можно отыскать некоторую систему, в составе которой они будут выступать уже как внутренние компоненты. Земля и ее спутник Луна находятся друг с другом во внешних отношениях с точки зрения большинства событий, происходящих там и тут. С другой стороны, хорошо известно, что Земля и Луна соотнесены внутренне в рамках Солнечной системы и в связи с законом всемирного тяготения, посредством которого они находятся также во внутренних отношениях в системах Галактики и Метагалактики.

 

К ЗВЕЗДАМ БЫСТРЕЕ СВЕТА!

Автору уже доводилось совершать мысленный сверхсветовой полет. И неоднократно. Его спутником и вожатым в этом увлекательном путешествии был опять-таки профессор В.П. Селезнев. Мы даже две книги на эту тему совместно написали. Одна так и называется "К звездам быстрее света: Русский космизм вчера, сегодня, завтра" (М., 1993). Уместно воспроизвести здесь основные вехи сверхсветового полета в космические дали, где между соавторами развернулся такой диалог.

Автор. Выявление закономерности движения материальных тел, света и полей гравитации показало, что никаких ограничений в скорости относительного перемещения не существует. Почему бы нам не представить, как будет происходить космический полет со сверхсветовой скоростью? Поскольку существует такая возможность, мы можем ею воспользоваться как первопроходцы для дерзновенного научно-технического подвига – совершить, хотя бы мысленно и в мечтах, полет быстрее света к далеким звездам. Существуют ли практические возможности, естественно, в будущем, реализовать подобную идею?

Профессор. Вопрос затрагивает чрезвычайно сложную проблему, которую можно решить, если основываться не на фантазиях, а на научной базе, учитывающей будущие достижения технического прогресса чрезвычайно высокого уровня. Конечно, в настоящее время подобная задача кажется несбыточной мечтой. Но впечатляющие успехи в области космонавтики вселяют оптимистическую надежду. Рассмотрим принципиальные возможности полета со сверхсветовой скоростью. Как известно, тяга ракетных двигателей не зависит от скорости движения ракеты, а только от скорости вытекания газов из сопел двигателей и запасов топлива. О том, какие скорости полета могут быть достигнуты, можно судить по следующему примеру. Пусть у звездолета имеются фотонные ракетные двигатели, то есть фотоны вылетают относительно корпуса со скоростью света. В этом случае если конечная масса ракеты будет составлять 1 процент от начальной массы (такие соотношения бывают и у современных космических ракет), то ракета может достичь 4,6 скорости света. При перегрузке в одну единицу (космонавты будут воспринимать силу, равную силе веса на Земле) разгон ракеты до такой скорости будет продолжаться около четырех с половиной лет (здесь не учитывается сопротивление космической среды, которое при таких скоростях может оказаться значительным и опасным). Во всяком случае, полеты к далеким звездам в обозримый отрезок времени превращаются из фантастических гипотез в реально осуществимые проекты.

Автор. Кстати, здесь мы вовсе не будем первопроходцами в таком путешествии. Первыми были Данте и Беатриче, совершившие воспарение в "Рае" при помощи светового потока и со скоростью света. Данте так передает свои ощущения от этого полета:

Я видел – солнцем загорелись дали
Так мощно, что ни ливень, ни поток
Таких озер вовек не расстилали.
Звук был так нов, и свет был так широк,
Что я горел постигнуть их начало;
Столь острый пыл вовек меня не жег...

А спустя пятьсот лет в путешествие навстречу несметным мирам с быстротой солнечных лучей Байрон отправил героев своей мистерии – Каина и Люцифера. "Лети со мной, как равный, – говорит дьявол Люцифер, двойник гетевского Мефистофеля, воплощение сомнений и дерзаний, – над бездною пространства – я открою тебе живую летопись миров прошедших, настоящих и грядущих". И Каин отвечает ему:

...О дивный,
Невыразимо дивный мир! И вы,
Несметные, растущие без меры
Громады звезд! Скажите, что такое
И сами вы, и эта голубая
Безбрежная воздушная пустыня,
Где кружитесь вы в бешеном веселье...

Но если бы мы вдруг оказались на чудо-корабле, оснащенном современной техникой и способном, преодолев световой барьер, легко превысить скорость света, – какие бы картины мироздания открылись бы перед нами?

Профессор. Попробуем представить, исходя из моей концепции световой теории и тороидальной модели фотона (см. выше). Сейчас усиленно разрабатываются и иные теории (в торсионной, в частности, допускаются любые сверхсветовые скорости). Но каким представится мир авторам новейших подходов, пусть они лучше расскажут сами. Итак, познакомимся с устройством разработанного мною (пусть пока воображаемого!) космического корабля. Его помещения оборудованы всеми средствами жизнеобеспечения, необходимыми для длительного космического перелета. Каждый агрегат, устройство, приспособление доведены здесь до совершенства. Запасы питания, которых хватит на многие годы, хранятся в герметичных холодильниках.

Автор. Прекрасно, но ведь не хлебом единым живет космонавт. Что ему придется делать в условиях длительного межзвездного полета?

Профессор. О, чего-чего, а работы и забот ему хватит. Один перечень так называемых штатных операций, которые придется выполнять ежедневно (если время измерять дневными сутками), занял бы объем целой поэмы. Правда, большинство этих операций будет выполняться с помощью автоматов и роботов, что существенно облегчит работу и исключит неритмичность ее выполнения. Не следует забывать, что у автоматических помощников электронная память и они не забывают о своих обязанностях.

Автор. Какие же обязанности будут важнейшими и наиболее сложными?

Профессор. Кроме жизнеобеспечения, к числу важнейших можно отнести работы по навигации космического корабля и управлению его полетом. Задачи навигации чрезвычайно ответственны. От их решения зависит не только точное и своевременное достижение намеченной цели, но и обеспечение безопасности полета: в космическом пространстве движутся многочисленные метеориты и другие тела, а также облака пыли, встреча с которыми может закончиться аварией или даже катастрофой. При околосветовых и сверхсветовых скоростях полета навигация будет осуществляться в основном в автоматическом режиме. Многочисленные органы чувств корабля – датчики навигационной информации – способны воспринимать излучения от небесных тел в широком диапазоне частот. Обработка сигналов этих датчиков, выполняемая бортовыми вычислительными машинами, позволяет определить координаты местонахождения корабля и скорость движения относительно звездных ориентиров. Основным ядром навигационного комплекса космического корабля явится автоматическая система для счисления пути относительно инерциального межзвездного пространства.

Автор. Управление движением звездолета, летящего быстрее скорости света, по-видимому, потребует решения новых технических проблем.

Профессор. Конечно, основная научно-техническая проблема связана с созданием ракетного фотонного двигателя, у которого реактивная сила тяги возникает при выбросе летящего потока вещества – светового потока. Мощные излучатели света, которыми располагает двигатель, создают давление света. Это давление, действуя на корабль, вызывает согласно закону Ньютона ускоренное его движение. В частности, если двигатель будет создавать ускорение, например, равное ускорению силы тяжести на Земле (9,8 м/сек2) в течение 9 месяцев, то корабль будет увеличивать скорость полета и достигнет скорости света. Работа фотонного двигателя обеспечивается мощным источником энергии, в качестве которого могут быть использованы ядерные установки. Управление фотонным двигателем и его ядерной установкой осуществляется системой автоматики, которая регулирует силу тяги двигателя, режимы работы ядерной установки, а также обеспечивает безопасность и надежность функционирования всего энергетического комплекса.

Автор. Но что же увидят космонавты? Ведь самое главное – это выполнение целевой задачи: изучение окружающего звездного мира и раскрытие тайны Вселенной. Конечно, на звездолете имеется много разнообразной научной аппаратуры, которая изучает физические характеристики космической среды, звезд и галактик. Однако самый лучший способ познания Природы, свойственный человеку, все увидеть своими глазами. Итак, к окнам звездолета!

Профессор. При разгоне корабля с перегрузкой в одну единицу они будут чувствовать себя как на земной поверхности. Но вот скорость полета приближается к скорости света. Посмотрим, что произойдет со звездным миром. Удивительная картина! Звезды в передней полусфере, наблюдаемые в переднее окно кабины управления корабля, станут намного ярче, а цвет их – более синим и даже фиолетовым. Кроме того, они сгрудятся по направлению полета, образуя узорчатый звездный ковер. Мир видится как будто через линзу, которая фокусирует его в сжатое изображение (рис. 124). Другими словами, воочию видятся все те эффекты, которые происходят с потоками света в относительном движении. Наш корабль движется навстречу звездам, которые мы видим в передней полусфере, и скорость V его полета складывается со скоростью С1, излучаемого звездами. Вследствие этого за счет доплеровского эффекта происходит "голубое смещение" спектров излучения звезд: красный спектр переходит в оранжевый и желтый, голубой – в синий и фиолетовый и т.д. Смещение звезд по направлению полета – не оптическое искажение окна нашего корабля, а проявления эффекта аберрации света. Наши глаза воспринимают изображения звезд в том направлении, по которому распространяется свет, то есть по направлению вектора результирующей скорости C1, составленного из суммы векторов скорости света относительно излучателя (звезды) и скорости полета корабля (на рис. 124 обозначены: 1, 2, 3 – видимые звезды; 11, 21, 31 – истинные положения звезд).

Автор. Обратим внимание на боковые области звездного неба относительно корабля: звезды стали реже в этом пространстве, а их спектры почти не изменились. Но особенно впечатляющая картина сзади корабля: звезды не только разошлись относительно друг друга, но значительно покраснели и стали менее яркими. Многие из них, которые привычно наблюдались в небе, вообще исчезли и стали невидимыми.

Профессор. Здесь наблюдаются те же световые эффекты – доплеровский эффект и аберрация света, но они проявляются как бы с обратными знаками. Действительно, раз корабль удаляется от звезд, расположенных сзади, то доплеровский эффект вызывает красное смещение спектров излучений. Те звезды, у которых спектр излучений был близок к красному или оранжевому, за счет доплеровского эффекта становятся просто невидимыми для человеческого глаза. Если же посмотреть в окно через прибор, обеспечивающий инфракрасное зрение, то многие из этих звезд-невидимок можно вновь обнаружить.

Автор. Но вот наступает знаменательное, можно даже сказать, критическое событие полета: звездолет достигает скорости света и переходит на режим сверхсветового полета. Интересно, что же увидят космонавты, наблюдая картины звездного мира при сверхсветовом полете?

Профессор. Посмотрите вначале (рис. 125) вперед по курсу, а затем в боковой и задней полусферах. В звездном мире случилось что-то невероятное: звезды сгрудились в одно ослепительное облако, по бокам относительно корабля они очень редки, а сзади – абсолютная темнота.

Автор. Подобные чудеса, пожалуй, нетрудно объяснить. Полет происходит быстрее света, поэтому сам свет, излучаемый звездами сзади, просто не догонит космический корабль. Вследствие этого в задней полусфере и образуется абсолютная чернота космического пространства.

Профессор. Продолжу мысль: свет, излученный ранее, еще до начала полета, находится впереди звездолета, и следовательно, он просто догоняет фотоны и натыкается на них. Вследствие этого чувствительные элементы (или глаза) позволяют увидеть эти звезды не сзади, а впереди корабля. Вот почему в переднем звездном облаке такая неразбериха: ведь мы видим одновременно всю массу звезд, находящихся как в передней (более яркие), так и в задней полусфере (значительно слабее по яркости). Такая накладка изображений значительно усложняет звездную навигацию корабля.

Автор. Но, кроме звезд, впереди корабля обнаруживается еще какое-то странное свечение неба. Что это такое?

Профессор. Космическое пространство заполнено весьма разреженной материей – атомами, ионами, электронами, фотонами и другими частицами. При полете со скоростью менее скорости света такие частицы сталкиваются с кораблем, вызывая при этом постепенное разрушение его поверхностной оболочки, наружного оборудования и смотровых стекол кабин корабля. Подобные столкновения регистрируются приборами в виде отдельных вспышек. Но при скорости полета быстрее света частота встреч становится столь значительной, что для наблюдателя они сливаются в некоторый фон звездного неба.

Автор. Путешествуя вместе с нами в мире звезд, читатель, может быть, задает вопрос: почему же он не видит картин прошлого.

Профессор. Картины земной жизни, проходившей в прошедшие времена, в виде потоков света, излученных материальными объектами, давно уже рассеялись и поглотились окружающей средой. Земная атмосфера поглощает значительную долю световой энергии, особенно в голубом и ультрафиолетовом спектрах. Кроме того, излучения предметов распространяются во все стороны веерообразно, и по мере удаления их видимый облик расплывается и слабеет. Таким образом, в межзвездном полете хотя и может встретиться какой-либо фотон – участник древних событий, но составить картину по нему не представляется возможным.

Автор. В такой странной и искаженной картине звездного мира путешественников подстерегают опасности: корабль летит с огромной скоростью, а небесные тела на самом деле никуда не исчезают и остаются на своих местах. Ведь, кроме видимых объектов, могут быть встречи и с "черными дырами", которые своим мощным гравитационным полем только "сосут Вселенную", притягивая к себе все материальное и не отдавая назад ничего, даже свет.

Профессор. Конечно, опасность сверхсветового полета чрезвычайно велика. Правда, известные еще до полета места нахождения небесных тел могут быть заложены в память бортовых ЭВМ. Однако встреча с таким "хищником", как черная дыра, вполне возможна. Обнаружить приближение такого объекта можно с помощью системы гравиметров (рис. 126), размещенных на корабле, и специальных зондов-разведчиков, выпускаемых во время полета для изучения окружающего пространства. Поскольку "черная дыра" обладает мощным гравитационным полем, то силу его притяжения можно обнаружить, измеряя градиент этого поля с помощью системы гравиметров. Конечно, даже минуя такого "хищника", следует учитывать, что его гравитационное поле может изменить траекторию и скорость полета.

 

В ОБЪЯТИЯХ "ЧЕРНОЙ ДЫРЫ"

Да, действительно, "черным дырам" в последнее время часто посвящаются статьи в научных, научно-популярных и научно-фантастических изданиях. Что же они такое? Как известно, под "черными дырами" понимаются такие области пространства-времени, из которых ничто, даже свет, не может вырваться наружу, так как в них чрезвычайно сильно действует гравитация. Мысль о существовании столь экстравагантных звезд, поле тяготения которых сможет удерживать свет и делать саму звезду невидимой, высказывал еще Лаплас. Тогда эта гипотеза оказалась невостребованной. Настоящая мода на "черные дыры" возникла в 60-е годы нынешнего века на волне релятивистского бума. Появились различные конкурирующие теории "черных дыр". Вних видели ключ к разгадке многих тайн Вселенной.

Особенно популярной стала тема воображаемых путешествий в окрестности "черных дыр" и даже в самое их нутро. Разработано несколько математических моделей подобных в принципе невозможных путешествий (с чем согласны и сами разработчики "виртуальных" проектов), опубликовано множество статей и книг. Одно из типичных описаний, заимствованное из книги У. Кауфмана "Космические рубежи теории относительности" (М., 1981), позволяет проникнуть не только в умопомрачительный мир "черных дыр", но и в мир парадоксального мышления современных космологов-релятивистов.

Представим человека, падающего в "черную дыру", – так обычно начинаются описания невероятных мыслепутешествий. Предположим, что он падает вниз ногами. Падение все время свободное, так что человек находится в состоянии невесомости. Однако при сближении с "черной дырой" он начинает ощущать нечто необычное, поскольку его ноги оказываются ближе к "черной дыре", чем голова. Дело в том, что ноги будут падать быстрее головы. В результате "экспериментатор" станет вытягиваться в длинную тонкую нить. К моменту пересечения горизонта событий его длина может достичь сотни километров. Популяризатор осознает, что падение в "черную дыру" – занятие не из приятных, ибо еще задолго до того, как испытуемый приблизится к фотонной сфере, его тело будет разорвано приливными силами невероятной мощи.

Могут ли вообще возникать сами "черные дыры"? Не потребуется ли бесконечно длительный срок (с нашей точки зрения) для того, чтобы поверхность умирающей звезды достигла горизонта событий? И да, и нет! – считают теоретики. Безусловно верно, что последние несколько атомов на поверхности коллапсирующей звезды никогда не уйдут за горизонт событий. Но дело не в этом. Ведь, согласно математическим расчетам, вся звезда становится практически "черной" уже спустя несколько тысячных секунды после начала коллапса. И при формировании горизонта событий можно считать, что почти вся звезда уже очутилась за горизонтом. Вещество под горизонтом событий очень быстро падает на сингулярность. На трехмерной диаграмме пространства-времени эта картина выглядит следующим образом (рис. 127).

Радиус горизонта событий часто называют шварцшильдовским радиусом (автор решения Шварцшильд). Как только необходимое количество вещества уйдет под шварцшильдовский радиус, образуется горизонт событий, и это вещество оказывается в ловушке, где оно коллапсирует до самой сингулярности. А несколько замешкавшихся атомов из внешних слоев умирающей звезды так и не смогут никогда перебраться под горизонт событий и обречены вечно парить над поверхностью со шварцшильдовским радиусом.

Чтобы лучше разобраться в структуре "черных дыр", представьте себе воображаемое путешествие на космическом корабле, оборудованном большими смотровыми иллюминаторами. Используя такую "технику", можно узнать, что увидели бы бесстрашные астронавты, если бы они действительно отправились в путешествие к различным типам "черных дыр", в сами эти дыры и даже сквозь них.

 

Шварцшильдовские радиусы черных дыр,

обладающих разными массами

___________________

Масса черной дыры Шварцшильдовский радиус

(радиус горизонта событий)

___________________

1 т 13.10- 15 ангстрем
106 т 13.10- 9 ангстрем
1012 т 13.10- 3 ангстрем
1015 т 13 ангстрем
1 масса Земли 0,8 см
1 масса Юпитера 2,8 м
1 масса Солнца 3 км
2 массы Солнца 6 км
3 массы Солнца 9 км
5 масс Солнца 15 км
10 масс Солнца 30 км
50 масс Солнца 150 км
100 масс Солнца 300 км
103 масс Солнца 3.103 км
106 масс Солнца 10 световых секунд
109 масс Солнца 2,8 свет. часов
1012 масс Солнца 117 свет. дней
1015 масс Солнца 320 свет. лет

___________________

Вообразим космический корабль, показанный на рисунке 128. Он снабжен двумя большими иллюминаторами. Носовой иллюминатор смотрит прямо в центр "черной дыры", а кормовой – в противоположном направлении. Из каждого иллюминатора видна половина всего неба. Космический корабль обладает очень мощными ракетными двигателями, позволяющими ему удерживаться на разных высотах над горизонтом событий. На борту корабля находятся два астронома, которые фотографируют с различных расстояний от черной дыры все, что им видно из иллюминаторов.

Для удобства астрономы выражают свое расстояние от "черной дыры" в шварцшильдовских радиусах, а не милях или километрах (шварцшильдовский радиус – это радиус горизонта событий). Чем массивнее "черная дыра", тем больше ее шварцшильдовский радиус. В нижеприведенной таблице приведены значения шварцшильдовского радиуса "черных дыр", обладающих разными массами (рис. 129). (Следует принять во внимание, что поперечник горизонта событий "черной дыры" – это в точности удвоенная величина ее шварцшильдовского радиуса, а раз поперечник горизонта событий равен удвоенному шварцшильдовскому радиусу, то поперечник фотонной сферы – это утроенный шварцшильдовский радиус).

Путешествие двух астрономов на воображаемом космическом корабле начинается с того, что этому уникальному кораблю предоставляется возможность просто падать на "черную дыру" вдоль ее радиуса. На разных этапах сближения с дырой космонавты включают мощные ракетные двигатели, которые мгновенно останавливают падение корабля. В эти моменты покоя астрономы делают два снимка - один из носового иллюминатора (вид в сторону "черной дыры"), а другой – из кормового (вид назад на Вселенную). Корабль останавливался пять раз, и всякий раз делались две фотографии. (На рис. 130 показано, где был космический корабль относительно "черной дыры" в моменты получения снимков.) Полученные фотоснимки, согласно теоретическим расчетам, должны выглядеть следующим образом (рис. 131).

Фото А (вид издалека от черной дыры). Расстояние от "черной дыры" равно многим шварцшильдовским радиусам. "Черная дыра" выглядит отсюда как маленькое черное пятнышко в центре поля зрения носового иллюминатора.

Фото Б (вид с расстояния 5 шварцшильдовских радиусов). При взгляде с 5 шварцшильдовских радиусов угловой поперечник "черной дыры" составляет около 460; она занимает центральную часть поля зрения носового иллюминатора. Дали Вселенной все еще видны в кормовой иллюминатор, хотя там уже заметны некоторые искажения.

Фото В (вид с расстояния 2 шварцшильдовских радиусов). При взгляде с 2 шварцшильдовских радиусов угловой поперечник "черной дыры" достигает 1360, и она закрывает большую часть поля зрения носового иллюминатора. Вид в кормовом иллюминаторе еще более искажен, чем на фото Б.

Фото Г (вид с поверхности фотонной сферы). При взгляде с фотонной сферы (1,5 шварцшильдовского радиуса) "черная дыра" заполняет все поле зрения носового иллюминатора, так что ее угловой поперечник равен 1800. Вид назад также чрезвычайно искажен, особенно по краям поля зрения.

Фото Д (вид с высоты в несколько метров над горизонтом событий). Прямо над горизонтом событий носовой иллюминатор сплошь черный. Кажущиеся "края" "черной дыры" теперь заполняют со всех сторон кормовой иллюминатор. Видимая через него внешняя Вселенная сжалась теперь в небольшой кружок с центром в направлении от "черной дыры".

На очень больших расстояниях от "черной дыры" сама дыра выглядела как маленькое пятно света в середине носового иллюминатора (рис. 131, А). Окружающее небо оставалось практически неискаженным, за одним важным исключением. Все звезды во Вселенной посылают хоть немного света в окрестности фотонной сферы. Этот свет кружит вокруг "черной дыры" раз-другой или больше, а затем его траектория раскручивается спиралью навстречу космическому кораблю. Поэтому астроном, проводящий наблюдения через носовой иллюминатор, видит многократные изображения всех звезд Вселенной, обрамляющие видимый "край" "черной дыры". (Чтобы рисунки 131, А-Д не получились перегруженными, все эти многократные изображения опущены.) Таким образом, вид неба около "черной дыры" будет весьма сложным и искаженным.

Рис. 131, Б показывает, что будет видно с расстояния в 5 шварцшильдовских радиусов. Так как космический корабль в этом случае находится вблизи "черной дыры", она представляется большей, чем на рис. 131, А. На расстоянии в 5 шварцшильдовских радиусов (что соответствует расстоянию 150 км, если "черная дыра" имеет массу в 10 солнечных масс) угловой поперечник дыры равен примерно 560. Вид же из кормового иллюминатора остается практически неискаженным. С расстояния в 2 шварцшильдовских радиуса (60 км от черной дыры в 10 раз более массивной, чем Солнце) "черная дыра" – основной объект в небе перед космическим кораблем. Ее угловой поперечник увеличился уже до 1360 (рис. 131, В). Все видимое вокруг нее из носового иллюминатора небо чрезвычайно сильно искажено и заполнено многократными изображениями огромного количества звезд и галактик. Даже из кормового иллюминатора небо наблюдается уже сильно искаженным. С "высоты" фотонной сферы (45 км от "черной дыры" в 10 раз массивней Солнца) изображение "черной дыры" занимает все поле зрения носового иллюминатора космического корабля, как видно на рисунке 131, Г. По краям поля зрения кормового иллюминатора теперь видны бесчисленные многократные изображения.

По мере дальнейшего приближения космического корабля к горизонту событий "черная дыра" начинает просматриваться по краям поля зрения кормового иллюминатора. Вся внешняя Вселенная видна теперь как маленький кружок в центре кормового иллюминатора (рис. 131, Д). Размеры этого кружка определяются углом раствора конуса выхода. На самом горизонте событий (это примерно в 30 км от центра черной дыры в 10 раз более массивной, чем Солнце), где конус схлопывается, все звезды неба собираются в одной точке в центре поля зрения кормового иллюминатора.

Вспомним, что воображаемый космический корабль-самоубийца снабжен мощными ракетными двигателями, способными остановить его падение на разных расстояниях от "черной дыры", так что астронавты могут не спеша вести свои наблюдения. Однако гравитационное поле "черной дыры" настолько мощное, что уже на расстоянии нескольких шварцшильдовских радиусов двигатели ракеты должны работать на полную мощность. Еще задолго до того, как астрономы доберутся до точки, из которой они смогли бы сделать снимок Б, им придется испытать действие ускорения, составляющего тысячи g, которое буквально расплющит их о переборки корабля.

Чтобы избежать подобной участи, другие два астронома принимают решение совершить свободное падение в "черную дыру" до конца. Их космический корабль новейшей конструкции вообще лишен ракетных двигателей, которые замедляли бы его падение. Более того, чтобы избежать разрывающего действия приливных сил, произведена микроминиатюризация как космического корабля, так и самих космонавтов. Тем не менее они понимают, что и такая экспедиция равносильна самоубийству, ибо, попав под горизонт событий, они будут обречены упасть на сингулярность. Эти два астронавта видят из иллюминаторов своего обреченного на гибель космического корабля совершенно иную картину. Однако, чтобы понять смысл этой картины, придется сначала уяснить природу шварцшильдовской геометрии.

Далее рассматривается следующая из виртуальных моделей с приведением множества схем, графиков, иллюстраций. Затем – следующая. Пока очередь не доходит до совершенно фантастических вариантов. К таковым относится, к примеру, так называемое керровское (по имени математика Керра) решение проблемы применительно к вращающимся "черным дырам" с использованием элипсоидальной системы координат. В итоге получаются совершенно умопомрачительные результаты, не совместимые ни со здравым, ни с каким угодно иным смыслом*. Но таков закономерный результат теоретических штудий и упражнений, когда они – в полном отрыве от реальной действительности опираются исключительно на игру воображения. Dixi etanimam meam salv-avi. [Я сказал и тем спас свою душу].

__________________
* См.: Кауфман У. Космические рубежи теории относительности. М., 1981. С. 278.

 

КОСМИЧЕСКИЕ КОНТАКТЫ

Одной из самых интригующих и по сей день не разгаданных тайн Вселенной является вопрос о возможных контактах между разумными существами, населяющими безграничные космические просторы и бесчисленные миры. Правда, для начала хорошо бы доказать, что такие гуманоиды существуют, и выявить, что они из себя представляют. Писатели-фантасты считают это как бы самим собой разумеющимся. Но не только они. Еще ученик Демокрита Метродор Хиосский писал: "Невозможно, чтобы в громадном полеро с только один пшеничный колос, и также невероятно, что в бескрайней Вселенной есть только один обитаемый мир".

Тема множественности обитаемых миров – одна из излюбленных в науке ХVII - ХVIII веков. Ей отдали дань многие выдающиеся мыслители – ученые и философы. Опубликованный в 1686 году трактат Бернара Фонтенеля "Разговоры о множестве миров", посвященный главным образом вопросу о населенности Космоса живыми разумными существами, надолго стал европейским бестселлером (в 1740 году он был переведен на русский язык Антиохом Кантемиром). Фонтенель показал читателю все известные планеты и вывел его в звездные просторы, где каждая звезда-солнце также освещает какой-нибудь населенный мир.

Мы, люди, во Вселенной не что иное, как небольшая семья, все лица которой друг с другом схожи. Но на какой-нибудь другой планете есть другая семья, лица которой имеют совсем другой вид. Ясно, что различия возрастают по мере все большего удаления, и, если бы кто-нибудь увидал рядом жителя Луны и жителя Земли, он сейчас же заметил бы, что они принадлежат более близким друг к другу мирам, чем житель Земли и житель Сатурна. Если здесь пользуются для разговора голосом, то на другой планете могут объясняться лишь знаками, а на третьей, еще более удаленной, возможно, не говорят вовсе. Здесь рассуждение основывается на опыте; там опыт мало способствует рассуждениям: а еще дальше старики не более сведущи, чем дети. Здесь морочат себе голову будущим больше, чем прошедшим; там прошедшее больше заботит людей, чем будущее; а еще дальше не заботятся ни о прошедшем, ни о будущем, и, быть может, эти существа далеко не самые несчастные. Говорят, что мы, по-видимому, лишены от природы шестого чувства, которое помогло бы нам узнать многое из того, чего мы не ведаем. Очевидно, это шестое чувство находится в каком-нибудь другом мире, где в свою очередь отсутствует какое-либо из наших пяти чувств. Быть может, существует даже большее количество всяких природных чувств. Но в дележе, который мы произвели с обитателями других планет, нам досталось всего только пять, которыми мы и удовлетворились, поскольку другие чувства остались нам неведомы. Поэтому наши знания имеют известные границы, каковые человеческому разуму никогда не перешагнуть: наступает момент, когда нам вдруг недостает наших пяти чувств; то, что остается нам непонятным, понимают в других мирах, которым, наоборот, неизвестно кое-что из того, что знаем мы. Наша планета наслаждается сладким ароматом любви, и в то же время во многих своих частях она опустошаема ужасами войны. На какой-нибудь другой планете вкушают вечный мир, но среди этого мира жители ее совсем не знают любви и томятся скукой. Наконец, то, что природа совершила в малом, среди людей, для распределения благ и талантов, то она, несомненно, повторила в больших размерах для миров и при этом не преминула пустить в ход чудесный секрет, помогающий ей все разнообразить и в то же самое время все уравнивать – в виде компенсации.

..........................................................

Но что сказать о жителях Меркурия? Они более чем в два раза ближе к Солнцу, чем мы. Должно быть, они обезумевают от бушующих в них жизненных сил. Я думаю, что у них совсем нет памяти – не более, чем у большинства негров; что они никогда ни о чем не размышляют и действуют лишь по прихоти и внезапному побуждению; наконец, что именно на Меркурии находятся сумасшедшие дома Вселенной. Они видят Солнце в девять раз большим, чем мы; оно посылает им настолько сильный свет, что, если бы они оказались на Земле, они приняли бы наши самые ясные дни всего лишь за слабые сумерки и, быть может, не смогли бы днем различать предметы. Жара, к которой они привыкли, настолько сильна, что тепло Центральной Африки их несомненно бы заморозило. Наше железо, наше серебро, наше золото у них, по всей очевидности, расплавилось бы, и все эти металлы можно было бы видеть только в жидком состоянии – как у нас обычно видят воду, хотя в определенные времена года она и бывает весьма твердым телом. Жители Меркурия и не заподозрили бы, что в другом мире эти жидкости, возможно образующие у них реки, оказываются в высшей степени твердыми телами.

Бернар де Фонтенель. Рассуждения о множественности миров

 

Но и значительно раньше читателям и слушателям (в том числе и русским) доводилось не раз совершать мысленные полеты в Космос и вступать в контакты с населяющими его существами. Такую возможность предоставлял им, к примеру, хорошо известный на Руси ветхозаветный апокриф "Книга Еноха Праведного". Или, как она именовалась в одном из списков ХIV века: "От книг Еноха Праведного, преже потопа, и ныне жив есть", откуда следовало, между прочим, что библейский праведник, поведавший о космических странствиях и "всем неизреченном и неисследованном мире", здравствует и поныне. В "записках" Еноха, переданных людям, настолько подробно, детально и натуралистично описано вознесение живого человека в занебесные сферы, что это дало основание некоторым популяризаторам заявить, что библейского патриарха в Космос забрали два инопланетянина, описанные в апокрифе, как "два мужа огромные", ранее на земле не виданные: "...Явились мне мужа два, весьма великие, каких никогда не видел я на земле: лица их как солнце блистающие, очи их как свечи горящие, из уст их исходил как бы огнь, одежда их как пена бегущая, светлее злата крыла их, белее снега руки их"*, – так описывает контакт с посланниками внеземного мира древнейшая коптская рукопись. Во время своего путешествия Енох посетил семь космических сфер, познакомился в внеземными мирами, их обитателями и механизмом управления Вселенной, узнал законы движения звезд и планет, воочию наблюдая вселенские чудеса – вплоть до сферического "светлостояния" в виде огненных колес. Сказания о межзвездных скитаниях Еноха Праведного пробуждали в душе космическое мироощущение, повествование от первого лица только усиливало это чувство у читателей и слушателей разных эпох и народов: "Меня окружили облака и туманы; движущиеся светила и молнии гнали меня, ветры ускоряли течение мое; они вознесли меня на небо. Я достиг стены, построенной из кристалла; колеблющееся пламя окружало ее; я вошел в это пламя. Я приблизился к обширному жилищу, построенному из кристалла. Стены, как и фундамент этого жилища, были из кристалла, а свод его состоял из движущихся звезд и молний..."** Сквозь образную символику здесь явственно просматриваются и позитивные факты.

________________
* Книга Еноха Праведного // Многоцветная жемчужина: Литературное творчество сирийцев, коптов и ромеев в I тысячелетии н.э. М., 1994. С. 129.
** Цит. по: Порфирьев И.Я. Апокрифические сказания о ветхозаветных лицах и событиях. Казань, 1872. С. 203–204.

 

В наше время на тему прошлых и будущих контактов с внеземными цивилизациями написаны тысячи статей и книг, создано множество кинофильмов и телесериалов. Появились специалисты, целиком посвятившие себя данной проблеме. В отношении будущих возможных контактов оптимистов среди ученых гораздо больше, чем пессимистов. В самом деле, в продолжении грядущих веков и тысячелетий человечество, уже сегодня активно штурмующее космические дали, непременно достигнет таких уголков Вселенной, где наверняка встретит собратьев по разуму.

Космистско-оптимистическое понимание проблемы обитаемости миров дал еще Циолковский. Он сформулировал 8 научных принципов, которые могут служить исходными ориентирами при освоении космического пространства на протяжении многих будущих веков и тысячелетий:

  1. Нельзя отрицать единство или некоторое однообразие в строении и образовании Вселенной: единство материи, света, тяжести жизни и т. д.
  2. Нельзя отрицать общее постоянство Вселенной, потому что вместо погасших солнц возникают новые.
  3. Нельзя отрицать, что число планет бесконечно, потому что бесконечно время и пространство; где же есть они, там должна быть и материя.
  4. Нельзя отрицать, что часть планет находится в условиях, благоприятных для развития жизни. Число таких бесконечно, потому что часть бесконечности тоже бесконечность.
  5. Нельзя отрицать, что на некоторых планетах животная жизнь достигает высшего развития, превосходящего человеческое, что она опережает развитие жизни на остальных планетах.
  6. Нельзя отрицать, что эта высшая органическая жизнь достигает великого научного и технического могущества, которое дозволит населению распространяться не только в своей солнечной системе, но и в соседних, отставших...
  7. Нельзя отрицать, что высшая жизнь распространяется в громадном большинстве случаев путем размножения и расселения, а не путем самозарождения, как на Земле, – потому что это избавляет от проволочки и мук постепенного развития, потому что разум сознательных существ понимает выгоду этого способа заселения космоса. Так, Земля заселяется не преобразованием волков или обезьян в человека, а размножением самого человека. Мы получаем овощи и фрукты не развитием бактерий, а от готовых совершенных растений.
  8. Нельзя, таким образом, отрицать, что Вселенная заполнена высшею сознательною и совершенной жизнью*.


Назад Окончание
Design by Heathen
© 2000 HW